2024
Long-Axial Field-Of-View Limited-Angle PET System with Ultra-High Time-Of-Flight and Depth-Of-Interaction
Marin T, Chemli Y, Razdevšek G, Zhuo Y, Orehar M, Najmaoui Y, Dolenec R, Gascon D, Gola A, Benlloch J, Alamo J, Barbera J, Fernandez-Tenllado J, Gomez S, Korpar S, Krizan P, Majewski S, Manera R, Mariscal-Castilla A, Mauricio J, Merzi S, Morera C, Pavon G, Pavon N, Penna M, Seljak A, Studen A, Zontar D, Pestotnik R, Fakhri G. Long-Axial Field-Of-View Limited-Angle PET System with Ultra-High Time-Of-Flight and Depth-Of-Interaction. 2024, 00: 1-2. DOI: 10.1109/nss/mic/rtsd57108.2024.10658297.Peer-Reviewed Original ResearchDepth of interactionDepth-of-interaction resolutionTime-of-flightPET systemImage quality metricsTime-of-flight resolutionField-of-view scanningSacrificing image qualityQuality metricsSilicon photomultipliersDetector panelPET instrumentationImage qualityResolution systemAngle geometryGeometric correctionReduce costsPerformancePhotomultiplierSystemResolutionMetricsElectronFlat Panel TOF-PET Detectors: a Simulation Study
Orehar M, Dolenec R, Fakhri G, Gascón D, Gola A, Korpar S, Križan P, Razdevšek G, Marin T, Chemli Y, Žontar D, Pestotnik R. Flat Panel TOF-PET Detectors: a Simulation Study. 2024, 00: 1-2. DOI: 10.1109/nss/mic/rtsd57108.2024.10658250.Peer-Reviewed Original ResearchTime resolutionAngular coverageFlat-panel detectorScintillation materialsGATE softwareAxial coverageBiograph VisionPanel detectorTotal-body coverageClinical scannerImage reconstructionDetectorReconstructed imagesHomogeneous contrastCylindrical scannerImage qualityState-of-the-artScintillationHigh-performance computingScannerPhantomResolutionCore hoursPositron emission tomographyGateDesign Optimisation of a Flat-Panel, Limited-Angle TOF-PET Scanner: A Simulation Study
Orehar M, Dolenec R, Fakhri G, Korpar S, Križan P, Razdevšek G, Marin T, Žontar D, Pestotnik R. Design Optimisation of a Flat-Panel, Limited-Angle TOF-PET Scanner: A Simulation Study. Diagnostics 2024, 14: 1976. PMID: 39272760, PMCID: PMC11487429, DOI: 10.3390/diagnostics14171976.Peer-Reviewed Original ResearchTime-of-flight positron emission tomographyTOF-PET scannerNEMA NU 2Evaluate spatial resolutionPET detectorsNU 2Scintillation materialsBiograph VisionRing scannerLimited-angleScanner designReadout levelsPoint sourcesFlat panel geometryClinical scannerSpatial resolutionReadout strategySingle-crystalImage qualityScintillationScannerFlat panelDesign parametersDetectorDesign optimisation
2023
Simulation results for limited-angle ultra-high time-of-flight resolution PET system
Marin T, Zhuo Y, Orehar M, Razdevšekc G, Dolenec R, Mounime I, Alamo J, Benlloch J, Chemli Y, Fernández-Tenllado J, Gascon D, Gola A, Gomez S, Grogg K, Guberman D, Korpar S, Krizan P, Majewski S, Manera R, Mariscal-Castilla A, Mauricio J, Merzi S, Morera C, Normandin M, Pavon G, Penna M, Seljak A, Studen A, Pestotnik R, Fakhri G. Simulation results for limited-angle ultra-high time-of-flight resolution PET system. 2023, 00: 1-1. DOI: 10.1109/nssmicrtsd49126.2023.10337821.Peer-Reviewed Original ResearchResolution PET systemsPET systemAxial fieldPositron emission tomography systemPositron emission tomography scannerTotal-body PET systemsLong axial fieldTOF resolutionNovel detectorNumerical phantomHigh-sensitivity systemMonte-Carlo simulationsSpatial resolutionPositron emission tomographyMonte-CarloSystem sensitivityImage resolutionImage qualityScintillationReconstruction engineFWHMResolutionTOFPhantomScannerImaging Performance of the Fully Assembled Ultra-High Resolution (UHR) Brain PET scanner
Loignon-Houle F, Toussaint M, Beaudoin J, Gaudreault M, Doyon V, Leroux J, Auger E, Thibaudeau C, Arpin L, Croteau E, Espinosa-Bentancourt E, Samson A, Bouchard J, Espagnet R, Viscogliosi N, Pepin C, Labrecque V, Paulin C, Marin T, Ouyang J, Normandin M, Tétrault M, Michaud J, Fontaine R, Fakhri G, Lecomte R. Imaging Performance of the Fully Assembled Ultra-High Resolution (UHR) Brain PET scanner. 2023, 00: 1-1. DOI: 10.1109/nssmicrtsd49126.2023.10338146.Peer-Reviewed Original ResearchBrain PET scannerUltra-high resolutionPET scannerPeak noise-equivalent count rateUltra Micro Hot Spot PhantomNoise-equivalent count rateAxial field-of-viewHot spot phantomHoffman brain phantomSmall-scale structuresCount rateBrain phantomContrast recoveryReadout schemeField of viewBrain PET imagingPhantomExcellent image qualityImaging performanceSpatial resolutionSmall structuresUltrahigh resolutionImage qualityPET imagingLarger rodsPET image denoising based on denoising diffusion probabilistic model
Gong K, Johnson K, El Fakhri G, Li Q, Pan T. PET image denoising based on denoising diffusion probabilistic model. European Journal Of Nuclear Medicine And Molecular Imaging 2023, 51: 358-368. PMID: 37787849, PMCID: PMC10958486, DOI: 10.1007/s00259-023-06417-8.Peer-Reviewed Original ResearchConceptsDenoising diffusion probabilistic modelPET image denoisingDiffusion probabilistic modelImage denoisingDenoising methodNonlocal meansNetwork inputGenerative adversarial networkData consistency constraintsProbabilistic modelLearning-based modelsAdversarial networkData distributionDenoisingRefinement stepsIterative refinementFlexible frameworkImage qualityPhysical degrading factorsUNetNetworkDatasetImagesInputNoise levelImpact of motion correction on [18F]-MK6240 tau PET imaging
Tiss A, Marin T, Chemli Y, Spangler-Bickell M, Gong K, Lois C, Petibon Y, Landes V, Grogg K, Normandin M, Becker A, Thibault E, Johnson K, Fakhri G, Ouyang J. Impact of motion correction on [18F]-MK6240 tau PET imaging. Physics In Medicine And Biology 2023, 68: 105015. PMID: 37116511, PMCID: PMC10278956, DOI: 10.1088/1361-6560/acd161.Peer-Reviewed Original ResearchConceptsMotion correctionPET quantitationImpact of motion correctionList-mode reconstructionMotion correction methodList-mode dataMotion-corrected imagesEffect of motion correctionVoxel displacementsPhantom experimentsOptical tracking dataLong acquisitionBrain PET scansSlow motionImage qualityPET imagingPositron emission tomographyCorrectionMotionCorrection methodRates of tau accumulationHead motionMotion metricsPhantomPositron
2022
Low-Dose Tau PET Imaging Based on Swin Restormer with Diagonally Scaled Self-Attention
Jang S, Lois C, Becker J, Thibault E, Li Y, Price J, Fakhri G, Li Q, Johnson K, Gong K. Low-Dose Tau PET Imaging Based on Swin Restormer with Diagonally Scaled Self-Attention. 2022, 00: 1-3. DOI: 10.1109/nss/mic44845.2022.10399169.Peer-Reviewed Original ResearchConvolutional neural networkSelf-attention mechanismSelf-attentionTransformer architectureComputer vision tasksLocal feature extractionLong-range informationVision tasksDenoising performanceSwin TransformerFeature extractionImage datasetsUNet structureNeural networkSwinComputational costReceptive fieldsImage qualityMap calculationNetwork structureArchitecturePET image qualityChannel dimensionsQuantitative evaluationDenoising
2021
A cross-scanner and cross-tracer deep learning method for the recovery of standard-dose imaging quality from low-dose PET
Xue S, Guo R, Bohn K, Matzke J, Viscione M, Alberts I, Meng H, Sun C, Zhang M, Zhang M, Sznitman R, El Fakhri G, Rominger A, Li B, Shi K. A cross-scanner and cross-tracer deep learning method for the recovery of standard-dose imaging quality from low-dose PET. European Journal Of Nuclear Medicine And Molecular Imaging 2021, 49: 1843-1856. PMID: 34950968, PMCID: PMC9015984, DOI: 10.1007/s00259-021-05644-1.Peer-Reviewed Original ResearchConceptsStructural similarity index measurePET imagingGenerative adversarial networkNuclear medicine physiciansArtificial intelligenceLow-dose scansBaseline image qualityDose reductionConditional generative adversarial networkClinical imaging assessmentSimilarity index measureDiversity of clinical practiceDevelopment of AI technologyDeep learning developmentDose acquisitionImaging assessmentMedicine physiciansImage qualityResultsThe improvementPatientsClinical acceptanceClinical practiceClinical settingAdversarial networkLow-dose PETMultipanel Limited Angle PET System With 50 ps FWHM Coincidence Time Resolution: A Simulation Study
Razdevšek G, Dolenec R, Križan P, Majewski S, Studen A, Korpar S, Fakhri G, Pestotnik R. Multipanel Limited Angle PET System With 50 ps FWHM Coincidence Time Resolution: A Simulation Study. IEEE Transactions On Radiation And Plasma Medical Sciences 2021, 6: 721-730. DOI: 10.1109/trpms.2021.3115704.Peer-Reviewed Original ResearchPET systemFWHM coincidence timing resolutionCoincidence time resolutionLutetium oxyorthosilicate crystalsExtended cardiac-torsoFlat-panel detectorClinical PET/CT scannerSpatial resolutionDerenzo phantomPlanar detectorsCount rateScanner geometryCardiac-torsoHot-rodDetection efficiencyParallax errorLow detection efficiencyIncreasing crystal lengthPET/CT scannerTime resolutionImage qualityScanner designAngular coverageFWHMCrystal lengthQuantitative PET in the 2020s: a roadmap
Meikle S, Sossi V, Roncali E, Cherry S, Banati R, Mankoff D, Jones T, James M, Sutcliffe J, Ouyang J, Petibon Y, Ma C, El Fakhri G, Surti S, Karp J, Badawi R, Yamaya T, Akamatsu G, Schramm G, Rezaei A, Nuyts J, Fulton R, Kyme A, Lois C, Sari H, Price J, Boellaard R, Jeraj R, Bailey D, Eslick E, Willowson K, Dutta J. Quantitative PET in the 2020s: a roadmap. Physics In Medicine And Biology 2021, 66: 06rm01. PMID: 33339012, PMCID: PMC9358699, DOI: 10.1088/1361-6560/abd4f7.Peer-Reviewed Original ResearchMeSH KeywordsArtificial IntelligenceHistory, 20th CenturyHistory, 21st CenturyHumansImage Processing, Computer-AssistedImaging, Three-DimensionalKineticsMedical OncologyNeoplasmsPositron Emission Tomography Computed TomographyPositron-Emission TomographyPrognosisRadiopharmaceuticalsSystems BiologyTomography, X-Ray ComputedConceptsTime-of-flight positron emission tomographyStatistical image reconstructionTotal-body positron emission tomographyPositron emission tomographyQuantitative positron emission tomographyImage reconstructionWhole-body positron emission tomographySensitivity of positron emission tomographyCapabilities of positron emission tomographyImage qualityClinical applicationTracer principleRelevant parametersOncology applicationsPhysicsStatistical qualityExpansion of applicationsEmission tomographyClinical practicePET/MRBiologically relevant parametersSensitive biomarkerPositron
2020
Motion correction for PET data using subspace-based real-time MR imaging in simultaneous PET/MR
Marin T, Djebra Y, Han P, Chemli Y, Bloch I, Fakhri G, Ouyang J, Petibon Y, Ma C. Motion correction for PET data using subspace-based real-time MR imaging in simultaneous PET/MR. Physics In Medicine And Biology 2020, 65: 235022. PMID: 33263317, PMCID: PMC7985095, DOI: 10.1088/1361-6560/abb31d.Peer-Reviewed Original ResearchConceptsPositron emission tomography reconstructionMotion-corrected PET reconstructionsPET reconstructionMotion-corrected PET imagesIrregular respiratory motionMotion fieldMotion correction methodMotion correction approachIrregular motion patternsUndersampled k-space dataImage quality of positron emission tomographyQuality of positron emission tomographyMotion patternsLow-rank characteristicsRespiratory motionContrast-to-noise ratioEstimated motion fieldSurrogate signalsMotion correctionK-space dataImage qualityReal-time MR imagingSimultaneous PET/MRMotion artifact reductionPET/MR scanners
2019
Arterial spin labeling MR image denoising and reconstruction using unsupervised deep learning
Gong K, Han P, Fakhri G, Ma C, Li Q. Arterial spin labeling MR image denoising and reconstruction using unsupervised deep learning. NMR In Biomedicine 2019, 35: e4224. PMID: 31865615, PMCID: PMC7306418, DOI: 10.1002/nbm.4224.Peer-Reviewed Original ResearchConceptsSignal-to-noise ratioImage denoisingReconstruction frameworkDeep learning-based image denoisingDeep learning-based denoisersMR image denoisingLearning-based denoisingLow signal-to-noise ratioK-space dataNoisy imagesTraining labelsTraining pairsNetwork inputNeural networkDenoisingIn vivo experiment dataSuperior performanceImaging speedReconstruction processImage qualityLong imaging timesNetworkFrameworkImagesSpatial resolutionBody motion detection and correction in cardiac PET: Phantom and human studies
Sun T, Petibon Y, Han P, Ma C, Kim S, Alpert N, Fakhri G, Ouyang J. Body motion detection and correction in cardiac PET: Phantom and human studies. Medical Physics 2019, 46: 4898-4906. PMID: 31508827, PMCID: PMC6842053, DOI: 10.1002/mp.13815.Peer-Reviewed Original ResearchConceptsList-mode dataMotion-compensated image reconstructionMotion correctionCenter of massPET list-mode dataMotion correction methodMotion detectionMotion estimationImage reconstructionPatient body motionDegrade image qualityNonrigid registrationImage qualityMotion transformationCoincident distributionBody motion detectionCardiac positron emission tomographyBack-projection techniqueCovariance matrixImage volumesBody motionPositron emission tomographyBack-projectionReference framePhantomMR-based cardiac and respiratory motion correction of PET: application to static and dynamic cardiac 18F-FDG imaging
Petibon Y, Sun T, Han P, Ma C, Fakhri G, Ouyang J. MR-based cardiac and respiratory motion correction of PET: application to static and dynamic cardiac 18F-FDG imaging. Physics In Medicine And Biology 2019, 64: 195009. PMID: 31394518, PMCID: PMC7007962, DOI: 10.1088/1361-6560/ab39c2.Peer-Reviewed Original ResearchConceptsMR-based motion correctionRespiratory motion correctionMotion correctionImproved spatial resolutionReconstructed activity concentrationCardiac PET dataSpatial resolutionCoincidence eventsMR-basedPET imagingContrast-to-noise ratioCardiac PET imagingRespiratory phasesMC dataImprove image qualityMR acquisitionQuantitative accuracyCardiac PETPET dataActivity concentrationsMyocardium wallF-FDG PETDynamics studiesImage qualityMotion artifactsPerformance evaluation of the 5‐Ring GE Discovery MI PET/CT system using the national electrical manufacturers association NU 2‐2012 Standard
Pan T, Einstein S, Kappadath S, Grogg K, Gomez C, Alessio A, Hunter W, Fakhri G, Kinahan P, Mawlawi O. Performance evaluation of the 5‐Ring GE Discovery MI PET/CT system using the national electrical manufacturers association NU 2‐2012 Standard. Medical Physics 2019, 46: 3025-3033. PMID: 31069816, PMCID: PMC7251507, DOI: 10.1002/mp.13576.Peer-Reviewed Original ResearchConceptsAxial field-of-viewPeak noise-equivalent count rateNoise-equivalent count rateField of viewCount ratePET performanceNational Electrical Manufacturers Association NU-2Transaxial field of viewPET/CT systemTime resolutionMean energy resolutionConventional photomultiplier tubesCount rate performanceImage quality phantomSpatial resolution measurementsFiltered back projection algorithmImage qualityEnergy resolutionAcquisition timeNU 2Count lossDetector designPhotomultiplier tubeMean energyPET/MR systemsBulk motion detection and correction using list-mode data for cardiac PET imaging
Sun T, Petibon Y, Han P, Ma C, Kim S, Alpert N, Fakhri G, Ouyang J. Bulk motion detection and correction using list-mode data for cardiac PET imaging. Proceedings Of SPIE--the International Society For Optical Engineering 2019, 11072: 110722f-110722f-5. DOI: 10.1117/12.2534701.Peer-Reviewed Original ResearchList-mode dataCardiac PET imagingPET list-mode dataMotion-corrected imagesLines of responsePET imaging applicationsCardiac PETImage qualityBulk motionCardiac PET studiesMotion correctionPET imagingBrain PETMotion estimationData-driven approachMotion detectionImaging applicationsImage spaceMoving frameStatic reference frameMotion transformationCorrectionCenter positionMotionReference framePET Image Deblurring and Super-Resolution With an MR-Based Joint Entropy Prior
Song T, Yang F, Chowdhury S, Kim K, Johnson K, Fakhri G, Li Q, Dutta J. PET Image Deblurring and Super-Resolution With an MR-Based Joint Entropy Prior. IEEE Transactions On Computational Imaging 2019, 5: 530-539. PMID: 31723575, PMCID: PMC6853071, DOI: 10.1109/tci.2019.2913287.Peer-Reviewed Original ResearchContrast-to-noise ratioStructural similarity indexHoffman phantomImage deblurringDigital phantomPhantom studyPeak signal-to-noise ratioSuper-resolution frameworkQuantitative accuracySimilarity indexSignal-to-noise ratioSpatial resolutionPhantomImage quantitationSuper-resolutionTau imaging studiesImage qualityPET imagingDeblurringHigh-resolution MR imagingRoot mean square errorSimulation studyBrainWebPost-processingPenalty functionTime of flight PET reconstruction using nonuniform update for regional recovery uniformity
Kim K, Kim D, Yang J, Fakhri G, Seo Y, Fessler J, Li Q. Time of flight PET reconstruction using nonuniform update for regional recovery uniformity. Medical Physics 2019, 46: 649-664. PMID: 30508255, PMCID: PMC6501218, DOI: 10.1002/mp.13321.Peer-Reviewed Original ResearchConceptsSignal-to-noise ratio regionVariant step sizeSignal-to-noise ratioNesterov momentumOS-SQSUniform recoveryOS-EMStep sizeNon-TOF PETOrdered subsetsQuad-core CPUEarly stopping criterionGraphics processing unitsTime-of-flight PET reconstructionReconstruction methodPET reconstruction methodsNesterov's momentum methodImage qualityPET reconstructionTOF-PETOverall signal-to-noise ratioActive regionLow activity regionsComputer simulationsRecovery ratio
2018
A novel depth-of-interaction rebinning strategy for ultrahigh resolution PET
Kim K, Dutta J, Groll A, Fakhri G, Meng L, Li Q. A novel depth-of-interaction rebinning strategy for ultrahigh resolution PET. Physics In Medicine And Biology 2018, 63: 165011. PMID: 30040073, PMCID: PMC6375090, DOI: 10.1088/1361-6560/aad58c.Peer-Reviewed Original ResearchConceptsDepth of interactionReconstructed imagesAlternating direction methodReconstructed image qualityPoisson log-likelihoodImage qualitySub-sampling methodPositron emission tomography systemReduce noise effectsDOI layersReconstruction frameworkDetector pixel sizePoint source experimentsQuadratic surrogatesCdZnTe detectorsAnimal positron emission tomographyLog-likelihoodDirection methodSmall animal positron emission tomographySource ExperimentPhoton countingRebinning methodSystem matrixNoise effectsSinogram