2024
In vivo neuropil density from anatomical MRI and machine learning
Akif A, Staib L, Herman P, Rothman D, Yu Y, Hyder F. In vivo neuropil density from anatomical MRI and machine learning. Cerebral Cortex 2024, 34: bhae200. PMID: 38771239, PMCID: PMC11107380, DOI: 10.1093/cercor/bhae200.Peer-Reviewed Original ResearchConceptsMagnetic resonance imagingSynaptic densityNeuropil densityCellular densityArtificial neural networkNeural networkPositron emission tomographyAnatomical magnetic resonance imagingHealthy subjectsSynaptic activityMRI scansMachine learning algorithmsBrain's energy budgetEmission tomographyIn vivo MRI scansResonance imagingTissue cellularityLearning algorithmsDiffusion magnetic resonance imagingMachine learningMicroscopic interpretationInterpretation of functional neuroimaging dataIndividual predictionsSubjects
2001
Spectroscopic Assessment of Alterations in Macromolecule and Small-Molecule Metabolites in Human Brain After Stroke
Graham G, Hwang J, Rothman D, Prichard J. Spectroscopic Assessment of Alterations in Macromolecule and Small-Molecule Metabolites in Human Brain After Stroke. Stroke 2001, 32: 2797-2802. PMID: 11739976, DOI: 10.1161/hs1201.099414.Peer-Reviewed Original Research
1997
Homocarnosine and the measurement of neuronal pH in patients with epilepsy
Rothman D, Behar K, Prichard J, Petroff O. Homocarnosine and the measurement of neuronal pH in patients with epilepsy. Magnetic Resonance In Medicine 1997, 38: 924-929. PMID: 9402193, DOI: 10.1002/mrm.1910380611.Peer-Reviewed Original Research
1996
Human Brain γ‐Aminobutyric Acid Levels and Seizure Control Following Initiation of Vigabatrin Therapy
Petroff O, Behar K, Mattson R, Rothman D. Human Brain γ‐Aminobutyric Acid Levels and Seizure Control Following Initiation of Vigabatrin Therapy. Journal Of Neurochemistry 1996, 67: 2399-2404. PMID: 8931472, DOI: 10.1046/j.1471-4159.1996.67062399.x.Peer-Reviewed Original ResearchConceptsBrain GABA contentImproved seizure controlBrain GABA levelsSeizure controlVigabatrin treatmentGABA levelsDaily doseAntiepileptic drugsOccipital lobeBrain gamma-aminobutyric acid (GABA) concentrationsGABA concentrationHuman brain GABA levelsGABA contentGamma-aminobutyric acid concentrationΓ-aminobutyric acid (GABA) levelsComplex partial seizuresNovel antiepileptic drugBrain GABA concentrationsSeizure frequencyPartial seizuresVigabatrin therapySustained elevationHuman occipital lobeGABA synthesisAcid levelsLow brain GABA level is associated with poor seizure control
Petroff O, Rothman D, Behar K, Mattson R. Low brain GABA level is associated with poor seizure control. Annals Of Neurology 1996, 40: 908-911. PMID: 9007096, DOI: 10.1002/ana.410400613.Peer-Reviewed Original ResearchConceptsLower GABA levelsBrain GABA levelsLower brain GABA levelsPoor seizure controlGABA levelsSeizure controlRecent seizuresGamma-aminobutyric acid concentrationComplex partial seizuresPartial seizuresEpileptic syndromesEpileptic focusOccipital lobeCerebrospinal fluidPatientsSeizuresSignificant associationMagnetic resonanceVivo measurementsSurface coilLevelsEpilepsySyndromeGABAAcid concentrationHuman brain GABA levels rise after initiation of vigabatrin therapy but fail to rise further with increasing dose
Petroff O, Rothman D, Behar K, Mattson R. Human brain GABA levels rise after initiation of vigabatrin therapy but fail to rise further with increasing dose. Neurology 1996, 46: 1459-1463. PMID: 8628502, DOI: 10.1212/wnl.46.5.1459.Peer-Reviewed Original ResearchShort echo time proton magnetic resonance spectroscopic imaging of macromolecule and metabolite signal intensities in the human brain
Hwang J, Graham G, Behar K, Alger J, Prichard J, Rothman D. Short echo time proton magnetic resonance spectroscopic imaging of macromolecule and metabolite signal intensities in the human brain. Magnetic Resonance In Medicine 1996, 35: 633-639. PMID: 8722812, DOI: 10.1002/mrm.1910350502.Peer-Reviewed Original ResearchConceptsSubacute stroke patientsProton magnetic resonance spectroscopicProton magnetic resonance spectroscopic imagingMagnetic resonance spectroscopic imagingStroke patientsHealthy subjectsMagnetic resonance spectroscopicMetabolite signal intensitiesBrain regionsPathological conditionsMacromolecule resonancesHuman brainBrainSignal intensitySubjectsRecovery timeSpectroscopic imagingPatientsThe effect of gabapentin on brain gamma‐aminobutyric acid in patients with epilepsy
Petroff O, Rothman D, Behar K, Lamoureux D, Mattson R. The effect of gabapentin on brain gamma‐aminobutyric acid in patients with epilepsy. Annals Of Neurology 1996, 39: 95-99. PMID: 8572673, DOI: 10.1002/ana.410390114.Peer-Reviewed Original ResearchConceptsGamma-aminobutyric acidBrain GABA levelsGABA levelsHuman brain GABA levelsBrain gamma-aminobutyric acidHigh-dose gabapentinAntiepileptic drug treatmentEffect of gabapentinPartial epilepsy patientsTreatment of epilepsyMechanism of actionAdjunctive therapyStandard dosesDrug treatmentEpilepsy patientsOccipital cortexGabapentinPatientsClinical useEpilepsyHuman brainMagnetic resonanceTreatmentMagnetic resonance spectroscopyVivo measurements
1995
Initial Observations on Effect of Vigabatrin on In Vivo 1H Spectroscopic Measurements of γ‐Aminobutyric Acid, Glutamate, and Glutamine in Human Brain
Petroff O, Rothman D, Behar K, Mattson R. Initial Observations on Effect of Vigabatrin on In Vivo 1H Spectroscopic Measurements of γ‐Aminobutyric Acid, Glutamate, and Glutamine in Human Brain. Epilepsia 1995, 36: 457-464. PMID: 7614922, DOI: 10.1111/j.1528-1157.1995.tb00486.x.Peer-Reviewed Original ResearchConceptsGamma-aminobutyric acidGABA levelsMumol/Antiepileptic drugsOccipital GABA levelsEffective antiepileptic drugEffects of vigabatrinStandard medicationStandard doseΓ-aminobutyric acidHealthy subjectsEpileptic patientsVigabatrinPatientsGABA transaminaseHuman cerebrumNoninvasive measurementHuman brainBrainGlutamateInitial observationsMedicationsCerebrumLevelsDose
1994
Proton spectroscopy of human stroke: Assessment of transverse relaxation times and partial volume effects in single volume STEAM MRS
Blamire A, Graham G, Rothman D, Prichard J. Proton spectroscopy of human stroke: Assessment of transverse relaxation times and partial volume effects in single volume STEAM MRS. Magnetic Resonance Imaging 1994, 12: 1227-1235. PMID: 7854028, DOI: 10.1016/0730-725x(94)90087-8.Peer-Reviewed Original ResearchConceptsStroke patientsAge-matched normal subjectsHuman strokeSpin-echo MRINormal subjectsNormal brainPatientsInfarcted tissueProton T2 relaxation timesInverse correlationHigh inverse correlationT2 relaxation timesCholine resonanceSignificant differencesProton spectroscopyPercentage volumeT2 valuesT. SpectraPartial volume effectsPeak amplitudeSTEAM sequence
1993
Early temporal variation of cerebral metabolites after human stroke. A proton magnetic resonance spectroscopy study.
Graham G, Blamire A, Rothman D, Brass L, Fayad P, Petroff O, Prichard J. Early temporal variation of cerebral metabolites after human stroke. A proton magnetic resonance spectroscopy study. Stroke 1993, 24: 1891-1896. PMID: 8248973, DOI: 10.1161/01.str.24.12.1891.Peer-Reviewed Original ResearchConceptsAcetyl-aspartate signalProton magnetic resonance spectroscopyCerebral infarctionProton magnetic resonance spectroscopy studyLactate signalAbundant leukocyte infiltrationAcetyl-aspartate peakNonhemorrhagic cerebral infarctionAcute cerebral infarctionDays of strokeMagnetic resonance spectroscopy studyContralateral normal brainClearance of lactateCreatine/phosphocreatineMagnetic resonance spectroscopyLong-term elevationLate deathsHuman strokeSubacute stageLeukocyte infiltrationChronic periodLesion volumeCerebral metabolitesInfarct zoneSecond examination
1992
Spectroscopic imaging of stroke in humans: histopathology correlates of spectral changes.
Petroff O, Graham G, Blamire A, Al-Rayess M, Rothman D, Fayad P, Brass L, Shulman R, Prichard J. Spectroscopic imaging of stroke in humans: histopathology correlates of spectral changes. Neurology 1992, 42: 1349-54. PMID: 1620345, DOI: 10.1212/wnl.42.7.1349.Peer-Reviewed Original ResearchConceptsCells/mm2Foamy macrophagesElevation of lactateGlial densityNeuropathologic examinationBrain macrophagesHuman strokeHistopathology correlateMacrophage densityInfarctsHigh lactateHistopathologic sectionsStrokeLactate concentrationMedial marginMacrophagesLactate signalMonthsLactate poolWeeksLactateCellular localizationMetabolic turnoverMagnetic resonanceMagnetic resonance spectroscopyProton magnetic resonance spectroscopy of cerebral lactate and other metabolites in stroke patients.
Graham G, Blamire A, Howseman A, Rothman D, Fayad P, Brass L, Petroff O, Shulman R, Prichard J. Proton magnetic resonance spectroscopy of cerebral lactate and other metabolites in stroke patients. Stroke 1992, 23: 333-340. PMID: 1542892, DOI: 10.1161/01.str.23.3.333.Peer-Reviewed Original ResearchConceptsProton magnetic resonance spectroscopyStroke patientsCerebral lactateDeep cerebral infarctsElevated cerebral lactateSmall subcortical infarctsCortical stroke patientsN-acetylaspartate levelsLong-term elevationCerebral infarctsCortical strokeOngoing ischemiaSymptom onsetBrain lactateElevated lactateInitial insultSubcortical infarctsN-acetylaspartateInfarct regionLesion onsetMagnetic resonance spectroscopyInfarctsPatientsFirst weekStroke
1990
Measurement of ethanol in the human brain using NMR spectroscopy.
Hanstock C, Rothman D, Shulman R, Novotny E, Petroff O, Prichard J. Measurement of ethanol in the human brain using NMR spectroscopy. Journal Of Studies On Alcohol And Drugs 1990, 51: 104-7. PMID: 2308346, DOI: 10.15288/jsa.1990.51.104.Peer-Reviewed Original Research