2023
Unified Noise-Aware Network for Low-Count PET Denoising With Varying Count Levels
Xie H, Liu Q, Zhou B, Chen X, Guo X, Wang H, Li B, Rominger A, Shi K, Liu C. Unified Noise-Aware Network for Low-Count PET Denoising With Varying Count Levels. IEEE Transactions On Radiation And Plasma Medical Sciences 2023, 8: 366-378. PMID: 39391291, PMCID: PMC11463975, DOI: 10.1109/trpms.2023.3334105.Peer-Reviewed Original ResearchLarge-scale dataDeep learningDynamic PET imagesLow-count dataNeural networkMultiple networksSpecific noise levelDifferent vendorsDifferent noise levelsDenoised resultsNoisy counterpartDynamic frameInput noise levelNetworkData availabilityHigher image noiseImage qualityImage noiseSuperior performanceImportant topicAdditional challengesNoise levelPET imagesLimited data availabilityVendors
2022
Federated Transfer Learning for Low-Dose PET Denoising: A Pilot Study With Simulated Heterogeneous Data
Zhou B, Miao T, Mirian N, Chen X, Xie H, Feng Z, Guo X, Li X, Zhou S, Duncan J, Liu C. Federated Transfer Learning for Low-Dose PET Denoising: A Pilot Study With Simulated Heterogeneous Data. IEEE Transactions On Radiation And Plasma Medical Sciences 2022, 7: 284-295. PMID: 37789946, PMCID: PMC10544830, DOI: 10.1109/trpms.2022.3194408.Peer-Reviewed Original ResearchLow-dose PETMedical data privacy regulationsFederated learning algorithmLarge domain shiftTransfer learning frameworkData privacy regulationsHigh-quality reconstructionFederated transferData privacyHeterogeneous dataDomain shiftLearning frameworkLearning algorithmPrivacy regulationsData distributionCollaborative trainingLow-dose dataPET reconstructionPrevious methodsFL methodEfficient wayLocal dataSuperior performanceExperimental resultsDenoisingDeep-learning-based methods of attenuation correction for SPECT and PET
Chen X, Liu C. Deep-learning-based methods of attenuation correction for SPECT and PET. Journal Of Nuclear Cardiology 2022, 30: 1859-1878. PMID: 35680755, DOI: 10.1007/s12350-022-03007-3.Peer-Reviewed Original ResearchConceptsHigh computational complexityAC strategyNeural networkRaw emission dataComputational complexityLearning methodsCT imagesΜ-mapsPET imagesLow accuracySuperior performanceImagesAttenuation correctionPromising resultsMR imagesAttenuation mapPET/CT scannerHigh noise levelsArtifactsNetworkCT artifactsPET/MRI scannerIntermediate stepComplexityScanner
2021
Automatic Inter-Frame Patient Motion Correction for Dynamic Cardiac PET Using Deep Learning
Shi L, Lu Y, Dvornek N, Weyman CA, Miller EJ, Sinusas AJ, Liu C. Automatic Inter-Frame Patient Motion Correction for Dynamic Cardiac PET Using Deep Learning. IEEE Transactions On Medical Imaging 2021, 40: 3293-3304. PMID: 34018932, PMCID: PMC8670362, DOI: 10.1109/tmi.2021.3082578.Peer-Reviewed Original ResearchConceptsConvolutional neural networkRegistration-based methodMotion correctionDynamic frameTracer distribution changeDynamic image dataPatient motion correctionPatient scansDeep learningPatient motionMotion estimationImage dataLSTM networkNeural networkRealistic patient motionTemporal informationMotion correction methodMotion detectionCardiac PETClinical workflowRigid translational motionFlow estimationNetworkPatient datasetsSuperior performanceInvestigation of Direct and Indirect Approaches of Deep-Learning-Based Attenuation Correction for General Purpose and Dedicated Cardiac SPECT Scanners
Chen X, Zhou B, Xie H, Shi L, Liu H, Liu C. Investigation of Direct and Indirect Approaches of Deep-Learning-Based Attenuation Correction for General Purpose and Dedicated Cardiac SPECT Scanners. 2021, 00: 1-2. DOI: 10.1109/nss/mic44867.2021.9875517.Peer-Reviewed Original ResearchNovel neural networkConventional U-NetMulti-channel inputDeep learningU-NetAttenuation mapNeural networkMap generationCardiac SPECTGeneral purposeSuperior performanceImagesDatasetIterative reconstructionAttenuation-corrected imagesCT transmission scanningAveraged errorNovel methodParallel-hole SPECTAttenuation correctionSPECT scannerMapsEmission imagesDirect approachScanner