2024
A deep learning-based approach to nuisance signal removal from MRSI data aqcuired without suppression
Lee W, Zhuo Y, Marin T, Han P, Chi D, Fakhri G, Ma C. A deep learning-based approach to nuisance signal removal from MRSI data aqcuired without suppression. Proceedings Of The International Society For Magnetic Resonance In Medicine ... Scientific Meeting And Exhibition. 2024 DOI: 10.58530/2024/0259.Peer-Reviewed Original ResearchDeep learning-based methodsLearning-based methodsU-Net structureSignal removalIn vivo MRSI dataNeural networkU-NetMRSI dataImage reconstructionSuperior performanceData processingRobust performanceHankel matrixNetworkNuisance signalsConventional methodsPerformanceMRSI signalsSignalMethodRemove nuisance signalsRemovalHankel
2023
Direct estimation of metabolite maps from undersampled k-space data using linear tangent space alignment
Ma C, Marin T, Han P, Fakhri G. Direct estimation of metabolite maps from undersampled k-space data using linear tangent space alignment. Proceedings Of The International Society For Magnetic Resonance In Medicine ... Scientific Meeting And Exhibition. 2023 DOI: 10.58530/2023/0496.Peer-Reviewed Original Research
2015
Improved Low-Rank Filtering of Magnetic Resonance Spectroscopic Imaging Data Corrupted by Noise and <inline-formula><tex-math notation="LaTeX">$B_0$</tex-math></inline-formula> Field Inhomogeneity
Liu Y, Ma C, Clifford B, Lam F, Johnson C, Liang Z. Improved Low-Rank Filtering of Magnetic Resonance Spectroscopic Imaging Data Corrupted by Noise and Field Inhomogeneity. IEEE Transactions On Biomedical Engineering 2015, 63: 841-849. PMID: 26353360, DOI: 10.1109/tbme.2015.2476499.$B_0$ Peer-Reviewed Original ResearchConceptsLow-rank filterSignal-to-noise ratioConstrained Cramer-RaoDenoising MRSI dataFiltering methodLow-rank modelCramer-RaoDenoising performanceRank minimizationHigh-resolution magnetic resonance spectroscopic imagingBoundary constraintsIn vivo MRSI dataData corruptionLow-rankMRSI dataFilterNoiseUpper boundB0 field inhomogeneityField inhomogeneity correctionDenoisingField inhomogeneityInhomogeneity correctionMethodMagnetic resonance spectroscopic imagingRemoval of nuisance signals from limited and sparse 1H MRSI data using a union‐of‐subspaces model
Ma C, Lam F, Johnson C, Liang Z. Removal of nuisance signals from limited and sparse 1H MRSI data using a union‐of‐subspaces model. Magnetic Resonance In Medicine 2015, 75: 488-497. PMID: 25762370, PMCID: PMC4567537, DOI: 10.1002/mrm.25635.Peer-Reviewed Original Research