2024
Diffusion-based Bayesian posterior distribution prediction of kinetic parameters in dynamic PET
Djebra Y, Liu X, Marin T, Tiss A, Dhaynaut M, Guehl N, Johnson K, Fakhri G, Ma C, Ouyang J. Diffusion-based Bayesian posterior distribution prediction of kinetic parameters in dynamic PET. 2024, 00: 1-1. DOI: 10.1109/nss/mic/rtsd57108.2024.10657955.Peer-Reviewed Original ResearchConditional variational autoencoderEfficient deep learning-based approachMarkov chain Monte CarloDenoising diffusion probabilistic modelDeep learning-based approachDiffusion probabilistic modelLearning-based approachApproximate posterior distributionPosterior distributionVariational autoencoderHeavy computationTau protein aggregationBayesian inferenceProbabilistic modelData-drivenStudy molecular processesBayesian posterior distributionProtein aggregationMetropolis-Hastings Markov chain Monte CarloMolecular processesAlzheimer's diseaseNeurodegenerative diseasesKinetic parametersEstimate posterior distributionsAutoencoderDiffusion Model-Based Posterior Distribution Prediction for Kinetic Parameter Estimation in Dynamic PET
Djebra Y, Liu X, Marin T, Tiss A, Dhaynaut M, Guehl N, Johnson K, Fakhri G, Ma C, Ouyang J. Diffusion Model-Based Posterior Distribution Prediction for Kinetic Parameter Estimation in Dynamic PET. 2011 IEEE International Symposium On Biomedical Imaging: From Nano To Macro 2024, 00: 1-5. PMID: 39530051, PMCID: PMC11554386, DOI: 10.1109/isbi56570.2024.10635805.Peer-Reviewed Original ResearchPosterior distributions of kinetic parametersDenoising diffusion probabilistic modelHyperphosphorylated tauP-tauDiffusion probabilistic modelAlzheimer's diseaseNeurodegenerative diseasesKinetic parametersPosterior distributionInference efficiencyComputational needsEstimate kinetic parametersProbabilistic modelComputation time
2020
Attenuation correction using deep Learning and integrated UTE/multi-echo Dixon sequence: evaluation in amyloid and tau PET imaging
Gong K, Han P, Johnson K, El Fakhri G, Ma C, Li Q. Attenuation correction using deep Learning and integrated UTE/multi-echo Dixon sequence: evaluation in amyloid and tau PET imaging. European Journal Of Nuclear Medicine And Molecular Imaging 2020, 48: 1351-1361. PMID: 33108475, PMCID: PMC8411350, DOI: 10.1007/s00259-020-05061-w.Peer-Reviewed Original ResearchConceptsAttenuation correctionResultsThe Dice coefficientPseudo-CT imagesMR-based AC methodsAccurate ACAC accuracyPET imagingDice coefficientQuantitative accuracyAtlas methodAC methodGradient echoNear verticesTau imagingTau PET imagingAlzheimer's diseaseUltrashortCorrectionTau pathologyRapid acquisitionDeep learning methodsMonitoring of Alzheimer’s diseasePET/MRAmyloid