Vincent Allen Pieribone PhD

Professor of Cellular and Molecular Physiology and of Neurobiology; Fellow, John B. Pierce Laboratory

Research Interests

Neurophysiology; Neurotransmission; Voltage dye imaging; Sensory physiology; Drug development; Coral biology; Fluorescent proteins

Research Summary

Dr Pieribone is developing genetically encoded fluorescent probes of membrane electrical potential. These probes allow one to use optical instruments (microscopes) to monitor the electrical activity of neurons. Such an approach is less invasive, allows study of identified cell types over large regions of the cortical surface. The laboratory has also engineered miniature imaging systems that can be head mounted on mammels and allow mobile recording of neuronal activity. These types of studies will allow a better understanding of the neuronal networks that encode information in the central nervous system.

Selected Publications

  • Sparks JS, Schelly RC, Smith WL, Davis MP, Tchernov D, et al. (2014) The Covert World of Fish Biofluorescence: A Phylogenetically Widespread and Phenotypically Variable Phenomenon. PLoS ONE 9: e83259. doi:10.1371/journal.pone.0083259.
  • Cao G, Platisa J, Pieribone VA, Raccuglia D, Kunst M, et al. (2013) Genetically targeted optical electrophysiology in intact neural circuits. Cell 154: 904–913.
  • Han Z, Jin L, Platisa J, Cohen LB, Baker BJ, et al. (2013) Fluorescent Protein Voltage Probes Derived from ArcLight that Respond to Membrane Voltage Changes with Fast Kinetics. PLoS ONE 8: e81295. doi:10.1371/journal.pone.0081295.
  • Pooyaei Mehr SF, Desalle R, Kao H-T, Narechania A, Han Z, et al. (2013) Transcriptome deep-sequencing and clustering of expressed isoforms from Favia corals. Bmc Genomics 14: 546. doi:10.1038/nbt.1754.
  • Barnett L, Platisa J, Popovic M, Pieribone VA, Hughes T (2012) A Fluorescent, Genetically-Encoded Voltage Probe Capable of Resolving Action Potentials. PLoS ONE 7: e43454. doi:10.1371/journal.pone.0043454.
  • Jin L, Han Z, Platisa J, Wooltorton JRA, Cohen LB, et al. (2012) Single Action Potentials and Subthreshold Electrical Events Imaged in Neurons with a Fluorescent Protein Voltage Probe. Neuron 75: 779–785.
  • Baker BJ, Jin L, Han Z, Cohen LB, Popovic M, et al. (2012) Genetically encoded fluorescent voltage sensors using the voltage-sensing domain of Nematostella and Danio phosphatases exhibit fast kinetics. J Neurosci Methods 208: 190–196. doi:10.1016/j.jneumeth.2012.05.016.
  • Jin L, Baker B, Mealer R, Cohen L, Pieribone V, et al. (2011) Random insertion of split-cans of the fluorescent protein venus into Shaker channels yields voltage sensitive probes with improved membrane localization in mammalian cells. J Neurosci Methods 199: 1–9. Available:
  • Park JH, Platisa J, Verhagen JV, Gautam SH, Osman A, et al. (2011) Head-mountable high speed camera for optical neural recording. J Neurosci Methods 201: 290–295. doi:10.1016/j.jneumeth.2011.06.024.
  • Davis DJ, Sachdev R, Pieribone VA (2011) Effect of high velocity, large amplitude stimuli on the spread of depolarization in S1 “barrel” cortex. Somatosens Mot Res 28: 73–85. doi:10.3109/08990220.2011.613177.


Edit Profile