2023
The relationship between elastin cross linking and alveolar wall rupture in human pulmonary emphysema
Fagiola M, Reznik S, Riaz M, Qyang Y, Lee S, Avella J, Turino G, Cantor J. The relationship between elastin cross linking and alveolar wall rupture in human pulmonary emphysema. American Journal Of Physiology - Lung Cellular And Molecular Physiology 2023, 324: l747-l755. PMID: 37014816, DOI: 10.1152/ajplung.00284.2022.Peer-Reviewed Original Research
2022
Muscle LIM Protein Force-Sensing Mediates Sarcomeric Biomechanical Signaling in Human Familial Hypertrophic Cardiomyopathy
Riaz M, Park J, Sewanan LR, Ren Y, Schwan J, Das SK, Pomianowski PT, Huang Y, Ellis MW, Luo J, Liu J, Song L, Chen IP, Qiu C, Yazawa M, Tellides G, Hwa J, Young LH, Yang L, Marboe CC, Jacoby DL, Campbell SG, Qyang Y. Muscle LIM Protein Force-Sensing Mediates Sarcomeric Biomechanical Signaling in Human Familial Hypertrophic Cardiomyopathy. Circulation 2022, 145: 1238-1253. PMID: 35384713, PMCID: PMC9109819, DOI: 10.1161/circulationaha.121.056265.Peer-Reviewed Original ResearchConceptsHypertrophic cardiomyopathySarcomeric mutationsFamilial hypertrophic cardiomyopathySudden cardiac deathCardiac myosin heavy chainMechanism-based treatmentsDevelopment of hypertrophyActivated T cellsCalcineurin-nuclear factorForce productionPhenotypic expressionPluripotent stem cell-derived cardiomyocytesStem cell-derived cardiomyocytesHeart failureCardiac deathVentricular hypertrophyCell-derived cardiomyocytesCardiac contractilityPharmacological interventionsT cellsCardiac diseaseCardiac hypertrophyPatient-specific induced pluripotent stem cellsPharmacological meansTwitch relaxationReadily Available Tissue-Engineered Vascular Grafts Derived From Human Induced Pluripotent Stem Cells
Luo J, Qin L, Park J, Kural MH, Huang Y, Shi X, Riaz M, Wang J, Ellis MW, Anderson CW, Yuan Y, Ren Y, Yoder MC, Tellides G, Niklason LE, Qyang Y. Readily Available Tissue-Engineered Vascular Grafts Derived From Human Induced Pluripotent Stem Cells. Circulation Research 2022, 130: 925-927. PMID: 35189711, PMCID: PMC9113663, DOI: 10.1161/circresaha.121.320315.Peer-Reviewed Original Research
2021
Epigallocatechin gallate facilitates extracellular elastin fiber formation in induced pluripotent stem cell derived vascular smooth muscle cells for tissue engineering
Ellis MW, Riaz M, Huang Y, Anderson CW, Luo J, Park J, Lopez CA, Batty LD, Gibson KH, Qyang Y. Epigallocatechin gallate facilitates extracellular elastin fiber formation in induced pluripotent stem cell derived vascular smooth muscle cells for tissue engineering. Journal Of Molecular And Cellular Cardiology 2021, 163: 167-174. PMID: 34979103, PMCID: PMC8920537, DOI: 10.1016/j.yjmcc.2021.12.014.Peer-Reviewed Original ResearchConceptsPluripotent stem cellsTissue engineeringStem cell derivativesPluripotent stem cell derivativesInduced pluripotent stem cellsStem cellsGraft productionMechanical strengthExtracellular formationExpression systemCell derivativesVascular smooth muscle cellsElastin fiber formationEngineered graftSmooth muscle cellsFiber formationNotable obstacleLack of elastinMuscle cellsEngineeringClinical applicationVascular graftsCell proliferative capacityElastin productionProliferative capacityMethods for Differentiating hiPSCs into Vascular Smooth Muscle Cells
Li ML, Luo J, Ellis MW, Riaz M, Ajaj Y, Qyang Y. Methods for Differentiating hiPSCs into Vascular Smooth Muscle Cells. Methods In Molecular Biology 2021, 2375: 21-34. PMID: 34591296, DOI: 10.1007/978-1-0716-1708-3_3.Peer-Reviewed Original ResearchConceptsHuman induced pluripotent stem cellsVascular smooth muscle cellsPluripotent stem cellsLateral plate mesodermEarly embryonic developmentStem cellsSmooth muscle cellsHuman pluripotent stem cellsInduced pluripotent stem cellsExtracellular matrix proteinsMuscle cellsMesoderm lineagePlate mesodermEmbryonic developmentVascular cell sourceEmbryoid bodiesEB formationMatrix proteinsCellular interactionsDisease modelingPhysiological characteristicsVascular tissueTissue-engineered vascular graftsCell-based therapiesCell replacementLoss of crossbridge inhibition drives pathological cardiac hypertrophy in patients harboring the TPM1 E192K mutation
Sewanan LR, Park J, Rynkiewicz MJ, Racca AW, Papoutsidakis N, Schwan J, Jacoby DL, Moore JR, Lehman W, Qyang Y, Campbell SG. Loss of crossbridge inhibition drives pathological cardiac hypertrophy in patients harboring the TPM1 E192K mutation. The Journal Of General Physiology 2021, 153: e202012640. PMID: 34319370, PMCID: PMC8321830, DOI: 10.1085/jgp.202012640.Peer-Reviewed Original ResearchConceptsHypertrophic cardiomyopathyHeart tissueCellular hypertrophyEngineered Heart TissuePathological cardiac hypertrophyThin filament mutationsMavacamten treatmentDiastolic dysfunctionDisease featuresHypertrophic effectCardiac hypertrophyContractile differencesHypertrophyFundamental disease mechanismsCrossbridge activityInherited disorderOverall Ca2Uncertain significancePatient phenotypesDisease mechanismsLow Ca2PatientsK mutationMavacamtenTissueHuman-Induced Pluripotent Stem-Cell-Derived Smooth Muscle Cells Increase Angiogenesis to Treat Hindlimb Ischemia
Gao X, Gao M, Gorecka J, Langford J, Liu J, Luo J, Taniguchi R, Matsubara Y, Liu H, Guo L, Gu Y, Qyang Y, Dardik A. Human-Induced Pluripotent Stem-Cell-Derived Smooth Muscle Cells Increase Angiogenesis to Treat Hindlimb Ischemia. Cells 2021, 10: 792. PMID: 33918299, PMCID: PMC8066461, DOI: 10.3390/cells10040792.Peer-Reviewed Original ResearchConceptsLimb-threatening ischemiaSmooth muscle cellsHindlimb ischemiaFunctional outcomeChronic limb-threatening ischemiaMuscle cellsVascular endothelial growth factor (VEGF) expressionM2-type macrophagesMurine hindlimb ischemia modelNumber of macrophagesGrowth factor expressionLaser Doppler imagingStem cell sourceHindlimb ischemia modelStem cellsConsiderable ethical issuesTranslatable therapyIschemic limbsRenewable stem cell sourcesIschemia modelCapillary densityBlood flowIschemiaNovel treatmentsNude mice
2020
Shortening Velocity Causes Myosin Isoform Shift in Human Engineered Heart Tissues
Ng R, Sewanan LR, Stankey P, Li X, Qyang Y, Campbell S. Shortening Velocity Causes Myosin Isoform Shift in Human Engineered Heart Tissues. Circulation Research 2020, 128: 281-283. PMID: 33183160, PMCID: PMC7855774, DOI: 10.1161/circresaha.120.316950.Peer-Reviewed Original ResearchEfficient Differentiation of Human Induced Pluripotent Stem Cells into Endothelial Cells under Xenogeneic-free Conditions for Vascular Tissue Engineering
Luo J, Shi X, Lin Y, Yuan Y, Kural MH, Wang J, Ellis MW, Anderson CW, Zhang SM, Riaz M, Niklason LE, Qyang Y. Efficient Differentiation of Human Induced Pluripotent Stem Cells into Endothelial Cells under Xenogeneic-free Conditions for Vascular Tissue Engineering. Acta Biomaterialia 2020, 119: 184-196. PMID: 33166710, PMCID: PMC8133308, DOI: 10.1016/j.actbio.2020.11.007.Peer-Reviewed Original ResearchConceptsVascular tissue engineeringTissue engineeringSmall-diameter TEVGsDynamic bioreactor systemShear stressBioreactor systemCell alignmentVascular graftsXenogeneic-free conditionsEngineeringEndothelializationTEVGsApplicationsEndothelial cellsConditionsHuman induced pluripotent stem cellsAnimal-derived reagentsXenogeneic-free generation of vascular smooth muscle cells from human induced pluripotent stem cells for vascular tissue engineering
Luo J, Lin Y, Shi X, Li G, Kural MH, Anderson CW, Ellis MW, Riaz M, Tellides G, Niklason LE, Qyang Y. Xenogeneic-free generation of vascular smooth muscle cells from human induced pluripotent stem cells for vascular tissue engineering. Acta Biomaterialia 2020, 119: 155-168. PMID: 33130306, PMCID: PMC8168373, DOI: 10.1016/j.actbio.2020.10.042.Peer-Reviewed Original ResearchConceptsVascular tissue engineeringTissue-engineered vascular graftsTissue engineeringComparable mechanical strengthVascular smooth muscle cellsMechanical strengthSmooth muscle cellsPolyglycolic acid scaffoldsTechnology one stepBiodegradable polyglycolic acid (PGA) scaffoldsXenogeneic-free conditionsAnimal-derived reagentsMuscle cellsVSMC differentiationImmunodeficient mouse modelEngineeringVascular graftsOne-stepStem cellsPluripotent stem cellsMouse modelCollagen depositionComparable capacityBlood vesselsAcid scaffoldsContractile work directly modulates mitochondrial protein levels in human engineered heart tissues
Ng R, Sewanan LR, Brill AL, Stankey P, Li X, Qyang Y, Ehrlich BE, Campbell SG. Contractile work directly modulates mitochondrial protein levels in human engineered heart tissues. AJP Heart And Circulatory Physiology 2020, 318: h1516-h1524. PMID: 32383992, PMCID: PMC7311697, DOI: 10.1152/ajpheart.00055.2020.Peer-Reviewed Original ResearchConceptsMitochondrial proteinsMitochondrial massMitochondrial protein levelsMitochondrial protein expressionMyosin ATPase inhibitorMitochondrial biogenesisExtended tissue culturePathological cardiac adaptationATP demandActive length controlFull recapitulationBiogenesisLength controlHeart tissueProtein levelsATPase inhibitorProtein expressionCulture environmentProteinTissue cultureCardiac physiologyNovel bioreactorVivo conditionsContractile workVitro methodInduced pluripotent stem cell-derived smooth muscle cells increase angiogenesis and accelerate diabetic wound healing
Gorecka J, Gao X, Fereydooni A, Dash BC, Luo J, Lee SR, Taniguchi R, Hsia HC, Qyang Y, Dardik A. Induced pluripotent stem cell-derived smooth muscle cells increase angiogenesis and accelerate diabetic wound healing. Regenerative Medicine 2020, 15: 1277-1293. PMID: 32228292, PMCID: PMC7304438, DOI: 10.2217/rme-2019-0086.Peer-Reviewed Original ResearchConceptsSmooth muscle cellsMuscle cellsDiabetic wound healingWound healingPro-angiogenic cytokinesMurine AdiposeStem cellsType macrophagesCollagen scaffoldsCultured mediumM2-type macrophagesCellsNumber of totalNew candidatesAngiogenesisNude miceDiabetic woundsPromising new candidateScaffoldsHealingCytokinesExpressionSecreteWoundsAdiposeTissue-Engineered Vascular Grafts with Advanced Mechanical Strength from Human iPSCs
Luo J, Qin L, Zhao L, Gui L, Ellis MW, Huang Y, Kural MH, Clark JA, Ono S, Wang J, Yuan Y, Zhang SM, Cong X, Li G, Riaz M, Lopez C, Hotta A, Campbell S, Tellides G, Dardik A, Niklason LE, Qyang Y. Tissue-Engineered Vascular Grafts with Advanced Mechanical Strength from Human iPSCs. Cell Stem Cell 2020, 26: 251-261.e8. PMID: 31956039, PMCID: PMC7021512, DOI: 10.1016/j.stem.2019.12.012.Peer-Reviewed Original Research
2019
Modular design of a tissue engineered pulsatile conduit using human induced pluripotent stem cell-derived cardiomyocytes
Park J, Anderson CW, Sewanan LR, Kural MH, Huang Y, Luo J, Gui L, Riaz M, Lopez CA, Ng R, Das SK, Wang J, Niklason L, Campbell SG, Qyang Y. Modular design of a tissue engineered pulsatile conduit using human induced pluripotent stem cell-derived cardiomyocytes. Acta Biomaterialia 2019, 102: 220-230. PMID: 31634626, PMCID: PMC7227659, DOI: 10.1016/j.actbio.2019.10.019.Peer-Reviewed Original ResearchConceptsSingle-ventricle cardiac defectsHuman umbilical arteryPluripotent stem cell-derived cardiomyocytesStem cell-derived cardiomyocytesFontan procedureSurgical interventionSVD patientsCell-derived cardiomyocytesFontan conduitTherapeutic potentialEngineered Heart TissueVascular conduitsCongenital disorderDesign strategyVariety of complicationsEfficient electrical conductivitySingle ventricle heartPrimary cardiac fibroblastsFontan circulationHeart failureCorrective surgeryUmbilical arteryPulmonary circulationBiodegradable materialsPulmonary systemPatient mutations linked to arrhythmogenic cardiomyopathy enhance calpain-mediated desmoplakin degradation
Ng R, Manring H, Papoutsidakis N, Albertelli T, Tsai N, See CJ, Li X, Park J, Stevens TL, Bobbili PJ, Riaz M, Ren Y, Stoddard CE, Janssen PM, Bunch TJ, Hall SP, Lo YC, Jacoby DL, Qyang Y, Wright N, Ackermann MA, Campbell SG. Patient mutations linked to arrhythmogenic cardiomyopathy enhance calpain-mediated desmoplakin degradation. JCI Insight 2019, 5 PMID: 31194698, PMCID: PMC6675562, DOI: 10.1172/jci.insight.128643.Peer-Reviewed Original ResearchSarcomere-Directed Calcium Reporters in Cardiomyocytes
Campbell SG, Qyang Y, Hinson JT. Sarcomere-Directed Calcium Reporters in Cardiomyocytes. Circulation Research 2019, 124: 1151-1153. PMID: 30973804, PMCID: PMC6527368, DOI: 10.1161/circresaha.119.314877.Peer-Reviewed Original Research
2018
Modeling elastin-associated vasculopathy with patient induced pluripotent stem cells and tissue engineering
Ellis MW, Luo J, Qyang Y. Modeling elastin-associated vasculopathy with patient induced pluripotent stem cells and tissue engineering. Cellular And Molecular Life Sciences 2018, 76: 893-901. PMID: 30460472, PMCID: PMC6433159, DOI: 10.1007/s00018-018-2969-7.Peer-Reviewed Original ResearchConceptsExtracellular matrix protein elastinAberrant vascular smooth muscle cell (VSMC) proliferationPatient induced pluripotent stem cellsInduced pluripotent stem cellsHuman disease modelingPluripotent stem cell (iPSC) technologyPluripotent stem cellsDrug screening approachesVascular proliferative diseasesVascular smooth muscle cell proliferationStem cell technologyProtein elastinReplenishable supplyDisruption of functionSmooth muscle cell proliferationDisease modelingStem cellsMuscle cell proliferationCell proliferationScreening approachTherapeutic developmentProliferative diseasesElastinBlood vessel dysfunctionTissue engineering
2017
Vascular smooth muscle cells derived from inbred swine induced pluripotent stem cells for vascular tissue engineering
Luo J, Qin L, Kural MH, Schwan J, Li X, Bartulos O, Cong XQ, Ren Y, Gui L, Li G, Ellis MW, Li P, Kotton DN, Dardik A, Pober JS, Tellides G, Rolle M, Campbell S, Hawley RJ, Sachs DH, Niklason LE, Qyang Y. Vascular smooth muscle cells derived from inbred swine induced pluripotent stem cells for vascular tissue engineering. Biomaterials 2017, 147: 116-132. PMID: 28942128, PMCID: PMC5638652, DOI: 10.1016/j.biomaterials.2017.09.019.Peer-Reviewed Original ResearchConceptsVascular smooth muscle cellsSmooth muscle cellsPluripotent stem cellsFunctional vascular smooth muscle cellsMassachusetts General Hospital miniature swineMuscle cellsSelf-assembly approachBiodegradable polyglycolic acid (PGA) scaffoldsPrimary vascular smooth muscle cellsSmooth muscle myosin heavy chainMuscle myosin heavy chainVascular tissue engineeringStem cellsTissue engineeringPolyglycolic acid scaffoldsReprogramming factorsVascular diseaseContractile functionVascular constructsImmunodeficient miceOrgan transplantsMiniature swinePreclinical investigationsGreat potentialMyosin heavy chainStem Cells in Cardiovascular Medicine: the Road to Regenerative Therapies
Anderson CW, Boardman N, Luo J, Park J, Qyang Y. Stem Cells in Cardiovascular Medicine: the Road to Regenerative Therapies. Current Cardiology Reports 2017, 19: 34. PMID: 28324469, PMCID: PMC5518932, DOI: 10.1007/s11886-017-0841-2.Peer-Reviewed Original ResearchConceptsCell technologyTissue-engineered productsStem cell technologyStem cell researchStem cellsDifferent stem cell sourcesCell researchMedical applicationsDysfunctional tissueStem cell sourceCell sourceRegenerative therapyTechnologyInherent characteristicsApplicationsCardiovascular medicineFunctionalityEngineeringBroad overviewCurrent trendsBasic differentiation
2016
Tissue-Engineered Vascular Rings from Human iPSC-Derived Smooth Muscle Cells
Dash BC, Levi K, Schwan J, Luo J, Bartulos O, Wu H, Qiu C, Yi T, Ren Y, Campbell S, Rolle MW, Qyang Y. Tissue-Engineered Vascular Rings from Human iPSC-Derived Smooth Muscle Cells. Stem Cell Reports 2016, 7: 19-28. PMID: 27411102, PMCID: PMC4945325, DOI: 10.1016/j.stemcr.2016.05.004.Peer-Reviewed Original ResearchConceptsVascular tissue engineeringFunctional vascular smooth muscle cellsCell-based tissueSelf-assembly approachRenewable sourcesTissue engineeringPluripotent stem cellsPlatform technologyBiomedical applicationsTissue ringsDrug screeningDisease modelingTissue model systemsHuman iPSCStem cellsBroad utilityEfficient approachLarge quantitiesEngineeringMaterials