2022
Readily Available Tissue-Engineered Vascular Grafts Derived From Human Induced Pluripotent Stem Cells
Luo J, Qin L, Park J, Kural MH, Huang Y, Shi X, Riaz M, Wang J, Ellis MW, Anderson CW, Yuan Y, Ren Y, Yoder MC, Tellides G, Niklason LE, Qyang Y. Readily Available Tissue-Engineered Vascular Grafts Derived From Human Induced Pluripotent Stem Cells. Circulation Research 2022, 130: 925-927. PMID: 35189711, PMCID: PMC9113663, DOI: 10.1161/circresaha.121.320315.Peer-Reviewed Original Research
2021
Epigallocatechin gallate facilitates extracellular elastin fiber formation in induced pluripotent stem cell derived vascular smooth muscle cells for tissue engineering
Ellis MW, Riaz M, Huang Y, Anderson CW, Luo J, Park J, Lopez CA, Batty LD, Gibson KH, Qyang Y. Epigallocatechin gallate facilitates extracellular elastin fiber formation in induced pluripotent stem cell derived vascular smooth muscle cells for tissue engineering. Journal Of Molecular And Cellular Cardiology 2021, 163: 167-174. PMID: 34979103, PMCID: PMC8920537, DOI: 10.1016/j.yjmcc.2021.12.014.Peer-Reviewed Original ResearchMeSH KeywordsCatechinElastinHumansInduced Pluripotent Stem CellsMuscle, Smooth, VascularMyocytes, Smooth MuscleReproducibility of ResultsTissue EngineeringConceptsPluripotent stem cellsTissue engineeringStem cell derivativesPluripotent stem cell derivativesInduced pluripotent stem cellsStem cellsGraft productionMechanical strengthExtracellular formationExpression systemCell derivativesVascular smooth muscle cellsElastin fiber formationEngineered graftSmooth muscle cellsFiber formationNotable obstacleLack of elastinMuscle cellsEngineeringClinical applicationVascular graftsCell proliferative capacityElastin productionProliferative capacityMethods for Differentiating hiPSCs into Vascular Smooth Muscle Cells
Li ML, Luo J, Ellis MW, Riaz M, Ajaj Y, Qyang Y. Methods for Differentiating hiPSCs into Vascular Smooth Muscle Cells. Methods In Molecular Biology 2021, 2375: 21-34. PMID: 34591296, DOI: 10.1007/978-1-0716-1708-3_3.Peer-Reviewed Original ResearchMeSH KeywordsCell DifferentiationHumansInduced Pluripotent Stem CellsMuscle, Smooth, VascularMyocytes, Smooth MuscleTissue EngineeringConceptsHuman induced pluripotent stem cellsVascular smooth muscle cellsPluripotent stem cellsLateral plate mesodermEarly embryonic developmentStem cellsSmooth muscle cellsHuman pluripotent stem cellsInduced pluripotent stem cellsExtracellular matrix proteinsMuscle cellsMesoderm lineagePlate mesodermEmbryonic developmentVascular cell sourceEmbryoid bodiesEB formationMatrix proteinsCellular interactionsDisease modelingPhysiological characteristicsVascular tissueTissue-engineered vascular graftsCell-based therapiesCell replacement
2020
Shortening Velocity Causes Myosin Isoform Shift in Human Engineered Heart Tissues
Ng R, Sewanan LR, Stankey P, Li X, Qyang Y, Campbell S. Shortening Velocity Causes Myosin Isoform Shift in Human Engineered Heart Tissues. Circulation Research 2020, 128: 281-283. PMID: 33183160, PMCID: PMC7855774, DOI: 10.1161/circresaha.120.316950.Peer-Reviewed Original ResearchEfficient Differentiation of Human Induced Pluripotent Stem Cells into Endothelial Cells under Xenogeneic-free Conditions for Vascular Tissue Engineering
Luo J, Shi X, Lin Y, Yuan Y, Kural MH, Wang J, Ellis MW, Anderson CW, Zhang SM, Riaz M, Niklason LE, Qyang Y. Efficient Differentiation of Human Induced Pluripotent Stem Cells into Endothelial Cells under Xenogeneic-free Conditions for Vascular Tissue Engineering. Acta Biomaterialia 2020, 119: 184-196. PMID: 33166710, PMCID: PMC8133308, DOI: 10.1016/j.actbio.2020.11.007.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlood Vessel ProsthesisCell DifferentiationEndothelial CellsHumansInduced Pluripotent Stem CellsTissue EngineeringConceptsVascular tissue engineeringTissue engineeringSmall-diameter TEVGsDynamic bioreactor systemShear stressBioreactor systemCell alignmentVascular graftsXenogeneic-free conditionsEngineeringEndothelializationTEVGsApplicationsEndothelial cellsConditionsHuman induced pluripotent stem cellsAnimal-derived reagentsXenogeneic-free generation of vascular smooth muscle cells from human induced pluripotent stem cells for vascular tissue engineering
Luo J, Lin Y, Shi X, Li G, Kural MH, Anderson CW, Ellis MW, Riaz M, Tellides G, Niklason LE, Qyang Y. Xenogeneic-free generation of vascular smooth muscle cells from human induced pluripotent stem cells for vascular tissue engineering. Acta Biomaterialia 2020, 119: 155-168. PMID: 33130306, PMCID: PMC8168373, DOI: 10.1016/j.actbio.2020.10.042.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell DifferentiationHumansInduced Pluripotent Stem CellsMiceMuscle, Smooth, VascularMyocytes, Smooth MuscleTissue EngineeringConceptsVascular tissue engineeringTissue-engineered vascular graftsTissue engineeringComparable mechanical strengthVascular smooth muscle cellsMechanical strengthSmooth muscle cellsPolyglycolic acid scaffoldsTechnology one stepBiodegradable polyglycolic acid (PGA) scaffoldsXenogeneic-free conditionsAnimal-derived reagentsMuscle cellsVSMC differentiationImmunodeficient mouse modelEngineeringVascular graftsOne-stepStem cellsPluripotent stem cellsMouse modelCollagen depositionComparable capacityBlood vesselsAcid scaffoldsContractile work directly modulates mitochondrial protein levels in human engineered heart tissues
Ng R, Sewanan LR, Brill AL, Stankey P, Li X, Qyang Y, Ehrlich BE, Campbell SG. Contractile work directly modulates mitochondrial protein levels in human engineered heart tissues. AJP Heart And Circulatory Physiology 2020, 318: h1516-h1524. PMID: 32383992, PMCID: PMC7311697, DOI: 10.1152/ajpheart.00055.2020.Peer-Reviewed Original ResearchMeSH KeywordsHumansMitochondria, HeartMitochondrial ProteinsMyocardial ContractionMyocardiumTissue EngineeringConceptsMitochondrial proteinsMitochondrial massMitochondrial protein levelsMitochondrial protein expressionMyosin ATPase inhibitorMitochondrial biogenesisExtended tissue culturePathological cardiac adaptationATP demandActive length controlFull recapitulationBiogenesisLength controlHeart tissueProtein levelsATPase inhibitorProtein expressionCulture environmentProteinTissue cultureCardiac physiologyNovel bioreactorVivo conditionsContractile workVitro methodTissue-Engineered Vascular Grafts with Advanced Mechanical Strength from Human iPSCs
Luo J, Qin L, Zhao L, Gui L, Ellis MW, Huang Y, Kural MH, Clark JA, Ono S, Wang J, Yuan Y, Zhang SM, Cong X, Li G, Riaz M, Lopez C, Hotta A, Campbell S, Tellides G, Dardik A, Niklason LE, Qyang Y. Tissue-Engineered Vascular Grafts with Advanced Mechanical Strength from Human iPSCs. Cell Stem Cell 2020, 26: 251-261.e8. PMID: 31956039, PMCID: PMC7021512, DOI: 10.1016/j.stem.2019.12.012.Peer-Reviewed Original ResearchMeSH KeywordsBlood Vessel ProsthesisHumansInduced Pluripotent Stem CellsMyocytes, Smooth MuscleTissue Engineering
2019
Modular design of a tissue engineered pulsatile conduit using human induced pluripotent stem cell-derived cardiomyocytes
Park J, Anderson CW, Sewanan LR, Kural MH, Huang Y, Luo J, Gui L, Riaz M, Lopez CA, Ng R, Das SK, Wang J, Niklason L, Campbell SG, Qyang Y. Modular design of a tissue engineered pulsatile conduit using human induced pluripotent stem cell-derived cardiomyocytes. Acta Biomaterialia 2019, 102: 220-230. PMID: 31634626, PMCID: PMC7227659, DOI: 10.1016/j.actbio.2019.10.019.Peer-Reviewed Original ResearchConceptsSingle-ventricle cardiac defectsHuman umbilical arteryPluripotent stem cell-derived cardiomyocytesStem cell-derived cardiomyocytesFontan procedureSurgical interventionSVD patientsCell-derived cardiomyocytesFontan conduitTherapeutic potentialEngineered Heart TissueVascular conduitsCongenital disorderDesign strategyVariety of complicationsEfficient electrical conductivitySingle ventricle heartPrimary cardiac fibroblastsFontan circulationHeart failureCorrective surgeryUmbilical arteryPulmonary circulationBiodegradable materialsPulmonary system
2018
Modeling elastin-associated vasculopathy with patient induced pluripotent stem cells and tissue engineering
Ellis MW, Luo J, Qyang Y. Modeling elastin-associated vasculopathy with patient induced pluripotent stem cells and tissue engineering. Cellular And Molecular Life Sciences 2018, 76: 893-901. PMID: 30460472, PMCID: PMC6433159, DOI: 10.1007/s00018-018-2969-7.Peer-Reviewed Original ResearchConceptsExtracellular matrix protein elastinAberrant vascular smooth muscle cell (VSMC) proliferationPatient induced pluripotent stem cellsInduced pluripotent stem cellsHuman disease modelingPluripotent stem cell (iPSC) technologyPluripotent stem cellsDrug screening approachesVascular proliferative diseasesVascular smooth muscle cell proliferationStem cell technologyProtein elastinReplenishable supplyDisruption of functionSmooth muscle cell proliferationDisease modelingStem cellsMuscle cell proliferationCell proliferationScreening approachTherapeutic developmentProliferative diseasesElastinBlood vessel dysfunctionTissue engineering
2017
Vascular smooth muscle cells derived from inbred swine induced pluripotent stem cells for vascular tissue engineering
Luo J, Qin L, Kural MH, Schwan J, Li X, Bartulos O, Cong XQ, Ren Y, Gui L, Li G, Ellis MW, Li P, Kotton DN, Dardik A, Pober JS, Tellides G, Rolle M, Campbell S, Hawley RJ, Sachs DH, Niklason LE, Qyang Y. Vascular smooth muscle cells derived from inbred swine induced pluripotent stem cells for vascular tissue engineering. Biomaterials 2017, 147: 116-132. PMID: 28942128, PMCID: PMC5638652, DOI: 10.1016/j.biomaterials.2017.09.019.Peer-Reviewed Original ResearchConceptsVascular smooth muscle cellsSmooth muscle cellsPluripotent stem cellsFunctional vascular smooth muscle cellsMassachusetts General Hospital miniature swineMuscle cellsSelf-assembly approachBiodegradable polyglycolic acid (PGA) scaffoldsPrimary vascular smooth muscle cellsSmooth muscle myosin heavy chainMuscle myosin heavy chainVascular tissue engineeringStem cellsTissue engineeringPolyglycolic acid scaffoldsReprogramming factorsVascular diseaseContractile functionVascular constructsImmunodeficient miceOrgan transplantsMiniature swinePreclinical investigationsGreat potentialMyosin heavy chainStem Cells in Cardiovascular Medicine: the Road to Regenerative Therapies
Anderson CW, Boardman N, Luo J, Park J, Qyang Y. Stem Cells in Cardiovascular Medicine: the Road to Regenerative Therapies. Current Cardiology Reports 2017, 19: 34. PMID: 28324469, PMCID: PMC5518932, DOI: 10.1007/s11886-017-0841-2.Peer-Reviewed Original ResearchMeSH KeywordsCardiovascular DiseasesCell DifferentiationHumansRegenerationStem CellsTissue EngineeringConceptsCell technologyTissue-engineered productsStem cell technologyStem cell researchStem cellsDifferent stem cell sourcesCell researchMedical applicationsDysfunctional tissueStem cell sourceCell sourceRegenerative therapyTechnologyInherent characteristicsApplicationsCardiovascular medicineFunctionalityEngineeringBroad overviewCurrent trendsBasic differentiation
2016
Anisotropic engineered heart tissue made from laser-cut decellularized myocardium
Schwan J, Kwaczala AT, Ryan TJ, Bartulos O, Ren Y, Sewanan LR, Morris AH, Jacoby DL, Qyang Y, Campbell SG. Anisotropic engineered heart tissue made from laser-cut decellularized myocardium. Scientific Reports 2016, 6: 32068. PMID: 27572147, PMCID: PMC5004193, DOI: 10.1038/srep32068.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnisotropyCell Culture TechniquesCells, CulturedEmbryonic Stem CellsInduced Pluripotent Stem CellsLasers, GasMechanotransduction, CellularMyocardial ContractionMyocardiumMyocytes, CardiacPolytetrafluoroethyleneRatsSwineTissue EngineeringTissue ScaffoldsTomography, Optical CoherenceTriiodothyronineTissue-Engineered Vascular Rings from Human iPSC-Derived Smooth Muscle Cells
Dash BC, Levi K, Schwan J, Luo J, Bartulos O, Wu H, Qiu C, Yi T, Ren Y, Campbell S, Rolle MW, Qyang Y. Tissue-Engineered Vascular Rings from Human iPSC-Derived Smooth Muscle Cells. Stem Cell Reports 2016, 7: 19-28. PMID: 27411102, PMCID: PMC4945325, DOI: 10.1016/j.stemcr.2016.05.004.Peer-Reviewed Original ResearchConceptsVascular tissue engineeringFunctional vascular smooth muscle cellsCell-based tissueSelf-assembly approachRenewable sourcesTissue engineeringPluripotent stem cellsPlatform technologyBiomedical applicationsTissue ringsDrug screeningDisease modelingTissue model systemsHuman iPSCStem cellsBroad utilityEfficient approachLarge quantitiesEngineeringMaterialsImplantable tissue-engineered blood vessels from human induced pluripotent stem cells
Gui L, Dash BC, Luo J, Qin L, Zhao L, Yamamoto K, Hashimoto T, Wu H, Dardik A, Tellides G, Niklason LE, Qyang Y. Implantable tissue-engineered blood vessels from human induced pluripotent stem cells. Biomaterials 2016, 102: 120-129. PMID: 27336184, PMCID: PMC4939127, DOI: 10.1016/j.biomaterials.2016.06.010.Peer-Reviewed Original ResearchConceptsVascular smooth muscle cellsVascular diseaseBlood vesselsAlpha-smooth muscle actinSmooth muscle myosin heavy chainActive vascular remodelingSmooth muscle cellsMuscle myosin heavy chainTissue-engineered blood vesselsStem cellsAbundant collagenous matrixPluripotent stem cellsInterposition graftAllogeneic graftsVascular remodelingΑ-SMANude ratsMuscle actinMyosin heavy chainClinical useMuscle cellsFunctional vascular smooth muscle cellsPatientsFunctional tissue-engineered blood vesselGraft