2022
Expression of the transcription factor PU.1 induces the generation of microglia-like cells in human cortical organoids
Cakir B, Tanaka Y, Kiral FR, Xiang Y, Dagliyan O, Wang J, Lee M, Greaney AM, Yang WS, duBoulay C, Kural MH, Patterson B, Zhong M, Kim J, Bai Y, Min W, Niklason LE, Patra P, Park IH. Expression of the transcription factor PU.1 induces the generation of microglia-like cells in human cortical organoids. Nature Communications 2022, 13: 430. PMID: 35058453, PMCID: PMC8776770, DOI: 10.1038/s41467-022-28043-y.Peer-Reviewed Original ResearchConceptsHuman embryonic stem cellsHuman cortical organoidsTranscription factor PUSingle-cell RNA sequencingMicroglia-like cellsSingle-cell transcriptomicsEmbryonic stem cellsDisease stage IIIRole of microgliaAD-associated genesExpression of genesCortical organoidsNeurodegenerative disordersRNA sequencingMolecular damageIntact complementStem cellsDysfunction of microgliaFunctional microgliaReduced expressionGenesCell clustersExpressionChemokine systemHuman microglia
2019
Engineering of human brain organoids with a functional vascular-like system
Cakir B, Xiang Y, Tanaka Y, Kural MH, Parent M, Kang YJ, Chapeton K, Patterson B, Yuan Y, He CS, Raredon MSB, Dengelegi J, Kim KY, Sun P, Zhong M, Lee S, Patra P, Hyder F, Niklason LE, Lee SH, Yoon YS, Park IH. Engineering of human brain organoids with a functional vascular-like system. Nature Methods 2019, 16: 1169-1175. PMID: 31591580, PMCID: PMC6918722, DOI: 10.1038/s41592-019-0586-5.Peer-Reviewed Original ResearchConceptsHuman cortical organoidsBlood-brain barrier characteristicsTrans-endothelial electrical resistanceVasculature-like structuresHuman brain organoidsHuman brain developmentCortical organoidsFunctional maturationPrenatal brainBrain diseasesBrain developmentHuman embryonic stem cellsBlood vesselsBrain organoidsTight junctionsDiseaseStem cellsOrganoidsVariant 2Nutrient transportersNutrient deliveryCellsEndotheliumMicrovasculature
2015
Transcriptional Profiling of Ectoderm Specification to Keratinocyte Fate in Human Embryonic Stem Cells
Tadeu AM, Lin S, Hou L, Chung L, Zhong M, Zhao H, Horsley V. Transcriptional Profiling of Ectoderm Specification to Keratinocyte Fate in Human Embryonic Stem Cells. PLOS ONE 2015, 10: e0122493. PMID: 25849374, PMCID: PMC4388500, DOI: 10.1371/journal.pone.0122493.Peer-Reviewed Original ResearchConceptsHuman embryonic stem cellsEmbryonic stem cellsEctoderm specificationStem cellsHuman embryonic stem cell differentiationEmbryonic stem cell differentiationStem cell differentiationKeratinocyte fateEctoderm lineageEpidermal specificationTranscriptional regulationCandidate regulatorsTranscriptional profilingEpidermal developmentGrowth factor activityProtein aP2Keratinocyte developmentCell differentiationΓ-secretase inhibitor DAPTGenesFactor activityHomeostatic conditionsEpithelial tissuesInhibitor DAPTCell signatureCharacterization of the mammalian miRNA turnover landscape
Guo Y, Liu J, Elfenbein SJ, Ma Y, Zhong M, Qiu C, Ding Y, Lu J. Characterization of the mammalian miRNA turnover landscape. Nucleic Acids Research 2015, 43: 2326-2341. PMID: 25653157, PMCID: PMC4344502, DOI: 10.1093/nar/gkv057.Peer-Reviewed Original ResearchConceptsMiRNA turnoverStable small RNAsMammalian cell typesCultured mammalian cellsSubset of miRNAsTurnover kineticsMiRNA biogenesisMost miRNAsMiR-222-5pNucleotide biasSmall RNAsMiRNA maturationMammalian cellsSame miRNAMiRNA poolExpression profilingHsp90 associationSequence determinantsDeep sequencingHsp90 inhibitionTurnover rateMiRNA isoformsDifferent turnover ratesSequence featuresCell types
2013
Transcriptional regulation in pluripotent stem cells by methyl CpG-binding protein 2 (MeCP2)
Tanaka Y, Kim KY, Zhong M, Pan X, Weissman SM, Park IH. Transcriptional regulation in pluripotent stem cells by methyl CpG-binding protein 2 (MeCP2). Human Molecular Genetics 2013, 23: 1045-1055. PMID: 24129406, PMCID: PMC3900111, DOI: 10.1093/hmg/ddt500.Peer-Reviewed Original ResearchConceptsPluripotent stem cellsMutant MECP2X chromosomeMethyl-CpGStem cellsGene expressionLong-range chromatin interactionsFundamental cellular physiologyRett syndromeMitochondrial membrane proteinInactive X chromosomeProtein 2Chromatin interactionsTranscriptional regulationTranscription regulatorsCellular physiologyTranscriptome analysisLoss of functionMembrane proteinsMeCP2 resultsDe novo mutationsRegulatory mechanismsMeCP2ChromosomesRTT patients