2007
BMP4 and PTHrP interact to stimulate ductal outgrowth during embryonic mammary development and to inhibit hair follicle induction
Hens JR, Dann P, Zhang JP, Harris S, Robinson GW, Wysolmerski J. BMP4 and PTHrP interact to stimulate ductal outgrowth during embryonic mammary development and to inhibit hair follicle induction. Development 2007, 134: 1221-1230. PMID: 17301089, DOI: 10.1242/dev.000182.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBone Morphogenetic Protein 4Bone Morphogenetic Protein Receptors, Type IBone Morphogenetic ProteinsDNA-Binding ProteinsEmbryo, MammalianGene Expression Regulation, DevelopmentalHair FollicleHomeodomain ProteinsMammary Glands, AnimalMesodermMiceMice, Mutant StrainsParathyroid Hormone-Related ProteinRNA, MessengerSignal TransductionUp-RegulationConceptsMammary mesenchymeBMP signalingMammary budMesenchymal cellsMammary epithelial cell fateEpithelial cell fateParathyroid hormone-related proteinHair follicle inductionEmbryonic mammary developmentMammary bud formationHormone-related proteinHair follicle formationMammary epithelial cellsMsx2 gene expressionCell fateEmbryonic epidermisMsx2 geneMsx2 expressionMammary placodesMouse embryosGene expressionVentral epidermisDuctal developmentBMP4Bud formation
2005
TOPGAL Mice Show That the Canonical Wnt Signaling Pathway Is Active During Bone Development and Growth and Is Activated by Mechanical Loading In Vitro*
Hens JR, Wilson KM, Dann P, Chen X, Horowitz MC, Wysolmerski JJ. TOPGAL Mice Show That the Canonical Wnt Signaling Pathway Is Active During Bone Development and Growth and Is Activated by Mechanical Loading In Vitro*. Journal Of Bone And Mineral Research 2005, 20: 1103-1113. PMID: 15940363, DOI: 10.1359/jbmr.050210.Peer-Reviewed Original ResearchConceptsTOPGAL miceBone developmentCanonical WntMature skeletonNeonatal bone developmentCanonical Wnt Signaling PathwayExpression of WntActivation of WntWnt Signaling PathwayX-gal stainingCalvarial cellsT-cell factorBone massCanonical Wnt activityCanonical Wnt signalingPrimary calvarial cell culturesMiceAnabolic activityPrimary calvarial cellsRT-PCRCell factorCultured calvarial cellsNeonatal skeletonCollagen ISignaling pathways