2021
TET2 Protects Against Vascular Smooth Muscle Cell Apoptosis and Intimal Thickening in Transplant Vasculopathy
Ostriker AC, Xie Y, Chakraborty R, Sizer AJ, Bai Y, Ding M, Song WL, Huttner A, Hwa J, Martin KA. TET2 Protects Against Vascular Smooth Muscle Cell Apoptosis and Intimal Thickening in Transplant Vasculopathy. Circulation 2021, 144: 455-470. PMID: 34111946, PMCID: PMC8643133, DOI: 10.1161/circulationaha.120.050553.Peer-Reviewed Original ResearchMeSH KeywordsAllograftsAnimalsApoptosisBiomarkersDioxygenasesDisease Models, AnimalDisease SusceptibilityDNA-Binding ProteinsHeart TransplantationHumansImmunohistochemistryInterferon-gammaMiceMice, KnockoutMyocytes, Smooth MuscleSignal TransductionSTAT1 Transcription FactorTunica IntimaVascular DiseasesConceptsCoronary allograft vasculopathyGraft arteriopathyIntimal thickeningCAV progressionRole of TET2VSMC apoptosisTransplant samplesGraft modelHigh-dose ascorbic acidTET2 expressionVSMC phenotypeContext of transplantCoronary blood flowEffect of IFNγTET2 activityTET2 depletionSmooth muscle cell apoptosisVascular smooth muscle cell apoptosisMuscle cell apoptosisAllograft vasculopathyDevastating sequelaeMedial thinningAortic graftHeart transplantTransplant failure
2020
Circular RNA CircMAP3K5 Acts as a MicroRNA-22-3p Sponge to Promote Resolution of Intimal Hyperplasia Via TET2-Mediated Smooth Muscle Cell Differentiation
Zeng Z, Xia L, Fan S, Zheng J, Qin J, Fan X, Liu Y, Tao J, Liu Y, Li K, Ling Z, Bu Y, Martin KA, Hwa J, Liu R, Tang WH. Circular RNA CircMAP3K5 Acts as a MicroRNA-22-3p Sponge to Promote Resolution of Intimal Hyperplasia Via TET2-Mediated Smooth Muscle Cell Differentiation. Circulation 2020, 143: 354-371. PMID: 33207953, DOI: 10.1161/circulationaha.120.049715.Peer-Reviewed Original ResearchConceptsHuman coronary artery smooth muscle cellsTet2 knockout miceCoronary artery smooth muscle cellsArtery smooth muscle cellsCircular RNAsSmooth muscle cellsVascular smooth muscle cellsWire-injured mouse femoral arteriesSmooth muscle cell differentiationCircular RNA profilingMuscle cell differentiationRNA sequencing dataLoss of TET2Coronary heart diseaseVascular SMC differentiationMiR-22-3pPlatelet-derived growth factorKnockout miceSMC differentiationMaster regulatorRNA sequencingRNA profilingPlatelet-derived growth factor-BBGene expressionSequencing dataReduced Platelet miR-223 Induction in Kawasaki Disease Leads to Severe Coronary Artery Pathology Through a miR-223/PDGFRβ Vascular Smooth Muscle Cell Axis
Zhang Y, Wang Y, Zhang L, Xia L, Zheng M, Zeng Z, Liu Y, Yarovinsky T, Ostriker AC, Fan X, Weng K, Su M, Huang P, Martin KA, Hwa J, Tang WH. Reduced Platelet miR-223 Induction in Kawasaki Disease Leads to Severe Coronary Artery Pathology Through a miR-223/PDGFRβ Vascular Smooth Muscle Cell Axis. Circulation Research 2020, 127: 855-873. PMID: 32597702, PMCID: PMC7486265, DOI: 10.1161/circresaha.120.316951.Peer-Reviewed Original ResearchMeSH KeywordsAdultAge FactorsAnimalsBlood PlateletsCase-Control StudiesCells, CulturedChildChild, PreschoolCoronary Artery DiseaseCoronary VesselsDisease Models, AnimalFemaleHumansInfantMaleMice, Inbred C57BLMice, KnockoutMicroRNAsMucocutaneous Lymph Node SyndromeMuscle, Smooth, VascularMyocytes, Smooth MusclePlatelet ActivationProspective StudiesReceptor, Platelet-Derived Growth Factor betaSeverity of Illness IndexSignal TransductionYoung AdultConceptsSevere coronary pathologyCoronary artery pathologyKawasaki diseaseCoronary pathologyArtery pathologyMiR-223Medial damageHealthy controlsVSMC dedifferentiationHallmark of KDMiR-223 knockout miceVascular smooth muscle cell dedifferentiationSmooth muscle cell dedifferentiationPlatelet miR-223Platelet-derived miRNAsVSMC differentiationMedial elastic fibersMiR-223 levelsMuscle cell dedifferentiationPotential therapeutic strategyInhibitor imatinib mesylateVascular smooth muscle cell phenotypeSmooth muscle cell phenotypeMiR-223 mimicsUptake of platelets
2019
Age associated non-linear regulation of redox homeostasis in the anucleate platelet: Implications for CVD risk patients
Jain K, Tyagi T, Patell K, Xie Y, Kadado AJ, Lee SH, Yarovinsky T, Du J, Hwang J, Martin KA, Testani J, Ionescu CN, Hwa J. Age associated non-linear regulation of redox homeostasis in the anucleate platelet: Implications for CVD risk patients. EBioMedicine 2019, 44: 28-40. PMID: 31130473, PMCID: PMC6604369, DOI: 10.1016/j.ebiom.2019.05.022.Peer-Reviewed Original ResearchMeSH KeywordsAdaptation, PhysiologicalAge FactorsAgedAged, 80 and overAgingAnimalsAntioxidantsApoptosisBiomarkersBlood PlateletsCardiovascular DiseasesComorbidityDisease Models, AnimalFemaleHomeostasisHumansMaleMiceMiddle AgedOxidation-ReductionOxidative StressPlatelet ActivationPlatelet AdhesivenessReactive Oxygen SpeciesRisk AssessmentRisk FactorsConceptsRisk patientsMouse studiesPlatelet phenotypeMajor adverse cardiovascular eventsHigh cardiovascular risk patientsAdaptive increaseAdverse cardiovascular eventsCentral pathophysiological roleCVD risk patientsCardiovascular risk patientsAggressive antiplatelet therapyEffect of comorbidityAge group 40Young healthy subjectsAntiplatelet therapyCardiovascular eventsYear age cohortAdvanced ageCVD patientsGroup 40Healthy subjectsPathophysiological roleElderly populationCardiovascular pathologyPatientsLMO7 Is a Negative Feedback Regulator of Transforming Growth Factor β Signaling and Fibrosis
Xie Y, Ostriker AC, Jin Y, Hu H, Sizer AJ, Peng G, Morris AH, Ryu C, Herzog EL, Kyriakides T, Zhao H, Dardik A, Yu J, Hwa J, Martin KA. LMO7 Is a Negative Feedback Regulator of Transforming Growth Factor β Signaling and Fibrosis. Circulation 2019, 139: 679-693. PMID: 30586711, PMCID: PMC6371979, DOI: 10.1161/circulationaha.118.034615.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell ProliferationCells, CulturedDisease Models, AnimalExtracellular MatrixFeedback, PhysiologicalFibrosisHyperplasiaIntegrin alphaVbeta3LIM Domain ProteinsMaleMice, Inbred C57BLMice, KnockoutMuscle, Smooth, VascularMyocytes, Smooth MuscleNeointimaSignal TransductionTranscription Factor AP-1Transcription FactorsTransforming Growth Factor beta1Vascular RemodelingVascular System InjuriesConceptsSmooth muscle cellsActivator protein-1 (AP-1) transcription factorExtracellular matrixProtein-1 transcription factorTransforming Growth Factor β SignalingGrowth factor β signalingMouse smooth muscle cellsTGF-β1 target genesHuman smooth muscle cellsActivator protein-1Muscle-specific deletionNegative feedback regulatorTGF-β pathwayECM protein expressionSmad3 phosphorylationNegative feedback regulationTranscription factorsArteriovenous fistulaECM depositionDomain interactsTGF-β proteinTarget genesLMO7TGF-β treatmentGrowth factor β
2014
Aldose Reductase–Mediated Phosphorylation of p53 Leads to Mitochondrial Dysfunction and Damage in Diabetic Platelets
Tang WH, Stitham J, Jin Y, Liu R, Lee SH, Du J, Atteya G, Gleim S, Spollett G, Martin K, Hwa J. Aldose Reductase–Mediated Phosphorylation of p53 Leads to Mitochondrial Dysfunction and Damage in Diabetic Platelets. Circulation 2014, 129: 1598-1609. PMID: 24474649, PMCID: PMC3989377, DOI: 10.1161/circulationaha.113.005224.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAldehyde ReductaseAnimalsApoptosisBcl-X ProteinBlood PlateletsCarotid Artery DiseasesDiabetes Mellitus, ExperimentalDiabetes Mellitus, Type 2Disease Models, AnimalFemaleHumansMaleMiceMice, Inbred C57BLMice, KnockoutMiddle AgedMitochondrial DiseasesPhosphorylationSignal TransductionThrombosisTumor Suppressor Protein p53ConceptsMitochondrial dysfunctionHyperglycemia-induced mitochondrial dysfunctionP53 phosphorylationAntiapoptotic protein Bcl-xL.Platelet apoptosisMitochondrial damageMitochondrial membrane potentialReductase activationActivation of p53Reactive oxygen species productionOxygen species productionBcl-xL.Molecular pathwaysSevere mitochondrial damagePhosphorylationNovel therapeutic targetAldose reductase activationSpecies productionMembrane potentialApoptosisCentral roleTherapeutic targetDose-dependent mannerActivationP53