2022
Olfactory decoding is positively associated with ad libitum food intake in sated humans
Perszyk EE, Davis XS, Small DM. Olfactory decoding is positively associated with ad libitum food intake in sated humans. Appetite 2022, 180: 106351. PMID: 36270421, DOI: 10.1016/j.appet.2022.106351.Peer-Reviewed Original ResearchConceptsAd libitum food intakeBody weight regulationFood intakeWeight regulationLong-term body weight regulationHealthy human adultsFunctional magnetic resonancePiriform cortexSatiety stateUnivariate analysisBody weightMeal consumptionPrevious functional magnetic resonanceNonfood odorsWeight changeBrain activationIntakeHuman adultsMulti-voxel pattern analysisHungry stateRole of olfactionOlfactory codingNeural patternsMagnetic resonanceAmygdalaFunctional Connectivity of the Nucleus Accumbens and Changes in Appetite in Patients With Depression
Kroemer NB, Opel N, Teckentrup V, Li M, Grotegerd D, Meinert S, Lemke H, Kircher T, Nenadić I, Krug A, Jansen A, Sommer J, Steinsträter O, Small DM, Dannlowski U, Walter M. Functional Connectivity of the Nucleus Accumbens and Changes in Appetite in Patients With Depression. JAMA Psychiatry 2022, 79: 993-1003. PMID: 36001327, PMCID: PMC9403857, DOI: 10.1001/jamapsychiatry.2022.2464.Peer-Reviewed Original ResearchConceptsMajor depressive disorderNAcc functional connectivityFunctional connectivityBody weightNucleus accumbensTreatment of MDDResting-state functional connectivityCase-control studySymptom-specific associationsHealthy control participantsIdentification of biomarkersClassification of diagnosesCohort studyMost patientsMean ageDepressive episodeDepressive disorderReduced appetiteMagnetic resonance imaging dataMAIN OUTCOMESubstantial burdenDepressive symptomsPatientsVentromedial prefrontal cortexReward circuit
2016
Effects of the modern food environment on striatal function, cognition and regulation of ingestive behavior
Burke MV, Small DM. Effects of the modern food environment on striatal function, cognition and regulation of ingestive behavior. Current Opinion In Behavioral Sciences 2016, 9: 97-105. PMID: 29619405, PMCID: PMC5879782, DOI: 10.1016/j.cobeha.2016.02.036.Peer-Reviewed Original ResearchFood cue reactivityCue reactivityWeight gain susceptibilityDorsal striatal dopamineEnergy-dense dietInhibitory controlModern food environmentChronic consumptionImpaired inhibitory controlStriatal dopamineStriatal functionStriatal circuitsAnimal studiesBody weightMetabolic diseasesDiet-induced adaptationsPalatable foodDense dietBrain functionIngestive behaviorFood environmentImpair inhibitory controlDietDeleterious influenceNegative outcomesPerceptual and Brain Response to Odors Is Associated with Body Mass Index and Postprandial Total Ghrelin Reactivity to a Meal
Sun X, Veldhuizen MG, Babbs AE, Sinha R, Small DM. Perceptual and Brain Response to Odors Is Associated with Body Mass Index and Postprandial Total Ghrelin Reactivity to a Meal. Chemical Senses 2016, 41: 233-248. PMID: 26826114, PMCID: PMC4850930, DOI: 10.1093/chemse/bjv081.Peer-Reviewed Original ResearchConceptsBody mass indexMass indexHealthy weight subjectsBrain responsesFunctional magnetic resonance imagingMagnetic resonance imagingGhrelin suppressionWeight subjectsMetabolic healthFree fatty acidsMetabolic measuresAnimal studiesBody weightResonance imagingOlfactory-guided behaviorDifferential brain responsesEndocrine influencesChemosensory stimuliMetabolic peptidesMetabolic responseOlfactory sensitivityHuman researchInconsistent resultsMealFatty acids
2015
Physiological mechanisms by which non-nutritive sweeteners may impact body weight and metabolism
Burke MV, Small DM. Physiological mechanisms by which non-nutritive sweeteners may impact body weight and metabolism. Physiology & Behavior 2015, 152: 381-388. PMID: 26048305, PMCID: PMC4661139, DOI: 10.1016/j.physbeh.2015.05.036.Peer-Reviewed Original ResearchConceptsNon-nutritive sweetenersNNS consumptionCognitive processesSugar-sweetened beverage consumptionNegative health outcomesMetabolic hormone secretionPotential biological mechanismsHormone secretionSSB intakeBody weightGut microbiotaSweet taste receptorBeverage consumptionHealth outcomesNNS useCentral mechanismsTaste receptorsBiological mechanismsMetabolic functionsPhysiological mechanismsMetabolismIntakeSecretionReceptors
2012
Acute stress potentiates brain response to milkshake as a function of body weight and chronic stress
Rudenga KJ, Sinha R, Small DM. Acute stress potentiates brain response to milkshake as a function of body weight and chronic stress. International Journal Of Obesity 2012, 37: 309-316. PMID: 22430303, PMCID: PMC3381866, DOI: 10.1038/ijo.2012.39.Peer-Reviewed Original ResearchConceptsBody mass indexFunctional magnetic resonance imagingChronic stressOrbitofrontal cortexRight amygdalaBody weightPalatable foodAcute stressBasal cortisol levelsBrain responsesAmygdala responseMagnetic resonance imagingStress-related eatingMilkshake receiptPalatable milkshakeObese womenOverweight womenMass indexRight amygdala responseOFC responsesPotentiates responsesCortisol levelsLeft amygdalaResonance imagingVentral striatum