Nicha Dvornek, PhD
Assistant Professor of Radiology and Biomedical ImagingDownloadHi-Res Photo
Cards
Appointments
Contact Info
About
Titles
Assistant Professor of Radiology and Biomedical Imaging
Appointments
Radiology & Biomedical Imaging
Assistant ProfessorPrimary
Other Departments & Organizations
- Bioimaging Sciences
- Image Processing & Analysis Group
- Radiology & Biomedical Imaging
- Yale Biomedical Imaging Institute
Education & Training
- Postdoctoral Fellow
- Yale School of Medicine (2017)
- Postdoctoral Associate
- Yale School of Medicine (2015)
- PhD
- Yale University (2012)
- MPhil
- Yale University (2009)
- MS
- Yale University (2007)
- BS
- Johns Hopkins University (2006)
Research
Overview
Medical Research Interests
Autistic Disorder; Biomedical Engineering; Brain; Image Processing, Computer-Assisted; Neural Networks, Computer
ORCID
0000-0002-1648-6055
Research at a Glance
Publications Timeline
A big-picture view of Nicha Dvornek's research output by year.
Yale Co-Authors
Frequent collaborators of Nicha Dvornek's published research.
Research Interests
Research topics Nicha Dvornek is interested in exploring.
42Publications
1,335Citations
James Duncan, PhD
Chi Liu, PhD
Lawrence Staib, PhD
Edward J Miller, MD
Albert Sinusas, MD
Denis Sukhodolsky, PhD
Brain
Image Processing, Computer-Assisted
Neural Networks, Computer
Publications
Featured Publications
Unsupervised inter-frame motion correction for whole-body dynamic PET using convolutional long short-term memory in a convolutional neural network
Guo X, Zhou B, Pigg D, Spottiswoode B, Casey ME, Liu C, Dvornek NC. Unsupervised inter-frame motion correction for whole-body dynamic PET using convolutional long short-term memory in a convolutional neural network. Medical Image Analysis 2022, 80: 102524. PMID: 35797734, PMCID: PMC10923189, DOI: 10.1016/j.media.2022.102524.Peer-Reviewed Original ResearchMeSH Keywords and ConceptsConceptsConvolutional neural networkNeural networkConvolutional long short-term memory (ConvLSTM) layersDeep learning-based frameworkConvolutional long short-term memoryLong short-term memory layersDeep learning baselinesLong short-term memoryDynamic temporal featuresLearning-based frameworkDeep learning approachShort-term memory layersTracer distribution changeMotion estimation networkMotion prediction errorInference timeEstimation networkLearning baselinesNon-rigid registration methodLearning approachMotion correction methodMemory layerShort-term memoryTemporal featuresRegistration method
2025
Connectome-based predictive modeling of early and chronic psychosis symptoms
Foster M, Ye J, Powers A, Dvornek N, Scheinost D. Connectome-based predictive modeling of early and chronic psychosis symptoms. Neuropsychopharmacology 2025, 1-9. PMID: 40016363, DOI: 10.1038/s41386-025-02064-9.Peer-Reviewed Original ResearchConceptsConnectome-based predictive modelingPositive and Negative Syndrome ScalePsychosis symptomsSymptom networksSymptom severityBrain networksNeural correlates of CPResting-state functional magnetic resonance imagingFunctional magnetic resonance imagingNegative Syndrome ScaleIdentified group differencesPredicted effect sizeCorrelates of CPGeneral psychopathologyNegative symptomsPositive symptomsSyndrome ScaleFrontoparietal networkNeural correlatesVirtual lesion analysisGroup differencesConnectivity changesEffect sizeLesion analysisLongitudinal study
2024
Style mixup enhanced disentanglement learning for unsupervised domain adaptation in medical image segmentation
Cai Z, Xin J, You C, Shi P, Dong S, Dvornek N, Zheng N, Duncan J. Style mixup enhanced disentanglement learning for unsupervised domain adaptation in medical image segmentation. Medical Image Analysis 2024, 101: 103440. PMID: 39764933, DOI: 10.1016/j.media.2024.103440.Peer-Reviewed Original ResearchMeSH Keywords and ConceptsConceptsUnsupervised domain adaptationMedical image segmentationDomain-invariant representationsImage segmentationDomain adaptationDisentanglement learningImage translationUnsupervised domain adaptation approachState-of-the-art methodsDomain shift problemDomain-invariant learningState-of-the-artPublic cardiac datasetsDiverse constraintsAdversarial learningConsistency regularizationContrastive learningFeature spaceSemantic consistencyComprehensive experimentsDomain generalizationData diversityShift problemMedical segmentationCardiac datasetsSelf-supervised Pre-training Tasks for an fMRI Time-Series Transformer in Autism Detection
Zhou Y, Duan P, Du Y, Dvornek N. Self-supervised Pre-training Tasks for an fMRI Time-Series Transformer in Autism Detection. Lecture Notes In Computer Science 2024, 15266: 145-154. DOI: 10.1007/978-3-031-78761-4_14.Peer-Reviewed Original ResearchConceptsSelf-supervised pre-training tasksPre-training tasksFunctional magnetic resonance imagingPre-training stepTransformer-based modelsTime-series fMRI dataTraining data availabilityAutism spectrum disorderTime series transformationsTransformation modelMachine learning methodsFunctional magnetic resonance imaging time-series dataClassification taskPublic datasetsTraining dataOver-fittingComputed functional connectivityLearning methodsModel performanceMasking strategyAutism detectionCross-validationTaskDatasetAverage improvementDeep Learning-based Dynamic PET Intra-frame Motion Correction and Integration with Inter-frame Motion Estimation
Guo X, Tsai Y, Liu Q, Guo L, Valadez G, Dvornek N, Liu C. Deep Learning-based Dynamic PET Intra-frame Motion Correction and Integration with Inter-frame Motion Estimation. 2024, 00: 1-1. DOI: 10.1109/nss/mic/rtsd57108.2024.10657268.Peer-Reviewed Original ResearchConceptsIntra-frame motionMotion correctionGated imagesLearning-based registration approachesDeep learning-based worksInter-frame motion estimationConventional image registrationLearning-based worksImage registrationMotion estimation processMotion estimation frameworkInter-frame registrationRespiratory gatingImprove image sharpnessInter-frameInference timeMotion estimationReconstructed framesDynamic PET datasetsGeneralization abilityPET imagingConventional registrationDynamic PET imagesImprove image qualityComputational inefficiencyCLEFT: Language-Image Contrastive Learning with Efficient Large Language Model and Prompt Fine-Tuning
Du Y, Chang B, Dvornek N. CLEFT: Language-Image Contrastive Learning with Efficient Large Language Model and Prompt Fine-Tuning. Lecture Notes In Computer Science 2024, 15012: 465-475. PMID: 39791126, PMCID: PMC11709740, DOI: 10.1007/978-3-031-72390-2_44.Peer-Reviewed Original ResearchConceptsContrastive Language-Image Pre-trainingLanguage modelState-of-the-art performanceSelf-supervised representation learningContrastive learning methodFine-tuningProlonged training timeBERT encoderContrastive learningRepresentation learningClass labelsGPU resourcesTraining samplesTraining timeMammography datasetModel sizePre-trainingLearning methodsEfficient frameworkVisual modelRichness of informationDatasetClinical diagnostic dataLearningMedical applicationsPrior knowledge-guided vision-transformer-based unsupervised domain adaptation for intubation prediction in lung disease at one week
Yang J, Henao J, Dvornek N, He J, Bower D, Depotter A, Bajercius H, de Mortanges A, You C, Gange C, Ledda R, Silva M, Dela Cruz C, Hautz W, Bonel H, Reyes M, Staib L, Poellinger A, Duncan J. Prior knowledge-guided vision-transformer-based unsupervised domain adaptation for intubation prediction in lung disease at one week. Computerized Medical Imaging And Graphics 2024, 118: 102442. PMID: 39515190, DOI: 10.1016/j.compmedimag.2024.102442.Peer-Reviewed Original ResearchConceptsUnsupervised domain adaptationSpatial prior informationDomain adaptationLabeled dataData-driven approachUnsupervised domain adaptation modelMedical image analysis tasksImage analysis tasksTransformer-based modelsMedical image analysisPrior informationOutcome prediction tasksAdversarial trainingDistribution alignmentDomain shiftAttention headsClass tokenPoor generalizationAnalysis tasksTarget domainPrediction taskData distributionKnowledge-guidedLocal weightsMedical imagesMine yOur owN Anatomy: Revisiting Medical Image Segmentation With Extremely Limited Labels
You C, Dai W, Liu F, Min Y, Dvornek N, Li X, Clifton D, Staib L, Duncan J. Mine yOur owN Anatomy: Revisiting Medical Image Segmentation With Extremely Limited Labels. IEEE Transactions On Pattern Analysis And Machine Intelligence 2024, 46: 11136-11151. PMID: 39269798, PMCID: PMC11903367, DOI: 10.1109/tpami.2024.3461321.Peer-Reviewed Original ResearchConceptsMedical image segmentationImage segmentationMedical image segmentation frameworkContext of medical image segmentationLong-tailed class distributionStrong data augmentationsIntra-class variationsSemi-supervised settingData imbalance issueImage segmentation frameworkMedical image analysisMedical image dataSupervision signalsContrastive learningBenchmark datasetsUnsupervised mannerLabel setsData augmentationSegmentation frameworkDomain expertisePseudo-codeImbalance issueModel trainingMedical imagesSegmentation modelCascaded Multi-path Shortcut Diffusion Model for Medical Image Translation
Zhou Y, Chen T, Hou J, Xie H, Dvornek N, Zhou S, Wilson D, Duncan J, Liu C, Zhou B. Cascaded Multi-path Shortcut Diffusion Model for Medical Image Translation. Medical Image Analysis 2024, 98: 103300. PMID: 39226710, DOI: 10.1016/j.media.2024.103300.Peer-Reviewed Original ResearchConceptsGenerative adversarial networkMedical image translationImage translationState-of-the-art methodsImage-to-image translationMedical image datasetsImage translation tasksImage-to-imageState-of-the-artMedical image processingHigh-quality translationsUncertainty estimationCascaded pipelineAdversarial networkImage datasetsSub-tasksTranslation qualityTranslation performanceTranslation tasksImage processingTranslation resultsDM methodPrior imageRobust performanceExperimental resultsTAI-GAN: A Temporally and Anatomically Informed Generative Adversarial Network for early-to-late frame conversion in dynamic cardiac PET inter-frame motion correction
Guo X, Shi L, Chen X, Liu Q, Zhou B, Xie H, Liu Y, Palyo R, Miller E, Sinusas A, Staib L, Spottiswoode B, Liu C, Dvornek N. TAI-GAN: A Temporally and Anatomically Informed Generative Adversarial Network for early-to-late frame conversion in dynamic cardiac PET inter-frame motion correction. Medical Image Analysis 2024, 96: 103190. PMID: 38820677, PMCID: PMC11180595, DOI: 10.1016/j.media.2024.103190.Peer-Reviewed Original ResearchConceptsGenerative adversarial networkAdversarial networkMotion estimation accuracyInter-frame motionIntensity-based image registration techniqueAll-to-oneSegmentation masksImage registration techniquesOriginal frameTemporal informationDiagnosis accuracyMyocardial blood flowEstimation accuracyFrame conversionPositron emission tomographyNovel methodImage qualityPET datasetsRegistration techniqueNetworkCardiac positron emission tomographyBlood flowDynamic cardiac positron emission tomographyMotion correctionCoronary artery disease
Clinical Trials
Current Trials
ACE Multisite Study of Adolescent & Adult Transitions
HIC ID2000024998RoleSub InvestigatorPrimary Completion Date04/30/2024Recruiting ParticipantsGenderBothAge12 years - 35 yearsCBT for Anxiety in Children With Autism
HIC ID1211011144RoleSub InvestigatorPrimary Completion Date06/30/2020Recruiting ParticipantsGenderBothAge8 years - 14 years
Academic Achievements & Community Involvement
Honors
honor Best Paper Award
10/13/2019International Award10th International Workshop on Machine Learning in Medical Imaging (MLMI 2019)DetailsChinahonor Best Challenger Award
10/13/2019International AwardConnectomics in Neuroimaging - Transfer Learning ChallengeDetailsChinahonor James Hudson Brown – Alexander Brown Coxe Postdoctoral Fellowship
07/01/2014Yale School of Medicine AwardYale School of MedicineDetailsUnited States
News
News
- April 08, 2025
Understanding the Transition From Early to Chronic Psychosis
- September 13, 2022
NIH Autism Center of Excellence Program Includes Yale Researchers
- October 26, 2020
Image Processing and Analysis Group Wins International Best Paper Award for 2nd Straight Year
- November 20, 2019
Dvornek's Machine Learning Approaches Earn Top Prizes at International Conference
Get In Touch
Contacts
Locations
N309A
Academic Office
The Anlyan Center
300 Cedar Street
New Haven, CT 06519