2004
Is there structural specificity in the reversible protein aggregates that are stored in secretory granules?
Keeler C, Hodsdon ME, Dannies PS. Is there structural specificity in the reversible protein aggregates that are stored in secretory granules? Journal Of Molecular Neuroscience 2004, 22: 43-49. PMID: 14742909, DOI: 10.1385/jmn:22:1-2:43.Peer-Reviewed Original ResearchConceptsSecretory granule proteinsMembrane proteinsGranule functionGranule proteinsAmino acid residuesSecretory granulesExcess membraneProtein aggregatesSecretory proteinsAcid residuesProteinStructural specificityResiduesSurface motifsGranulesAggregation processMembraneReversible aggregationSpecificityMotifNMR spectroscopyAggregationAggregatesCellsAccumulation
2003
The Tertiary Structure and Backbone Dynamics of Human Prolactin
Keeler C, Dannies PS, Hodsdon ME. The Tertiary Structure and Backbone Dynamics of Human Prolactin. Journal Of Molecular Biology 2003, 328: 1105-1121. PMID: 12729745, DOI: 10.1016/s0022-2836(03)00367-x.Peer-Reviewed Original ResearchConceptsFour-dimensional heteronuclear NMR spectroscopyTertiary structureBackbone dynamicsFour-helical bundleN-terminal loopSecretory granulesHeteronuclear NMR spectroscopyExtrapituitary prolactinNMR relaxation phenomenaThird helixFirst helixSecond helixGolgi complexFunctional bindingHematopoietic cytokinesBundle topologyDiscrete structural differencesFemale reproductive systemHuman prolactinProlactin receptorReversible oligomerizationHelixShort loopsReproductive systemGrowth factor
2001
A serum prolactin-binding protein: implications for growth hormone
Dannies P. A serum prolactin-binding protein: implications for growth hormone. Trends In Endocrinology And Metabolism 2001, 12: 427-428. PMID: 11701331, DOI: 10.1016/s1043-2760(01)00497-0.Peer-Reviewed Original ResearchMeSH KeywordsCarrier ProteinsHuman Growth HormoneHumansProlactinProtein BindingProtein Structure, TertiaryZincMisfolded growth hormone causes fragmentation of the Golgi apparatus and disrupts endoplasmic reticulum-to-Golgi traffic.
Graves T, Patel S, Dannies P, Hinkle P. Misfolded growth hormone causes fragmentation of the Golgi apparatus and disrupts endoplasmic reticulum-to-Golgi traffic. Journal Of Cell Science 2001, 114: 3685-94. PMID: 11707520, DOI: 10.1242/jcs.114.20.3685.Peer-Reviewed Original ResearchMeSH KeywordsAlkaline PhosphataseAnimalsAnti-Bacterial AgentsBiomarkersCarrier ProteinsChromatinCoatomer ProteinCOS CellsEndoplasmic ReticulumEndoplasmic Reticulum Chaperone BiPGolgi ApparatusGreen Fluorescent ProteinsHeat-Shock ProteinsHuman Growth HormoneHumansIndicators and ReagentsLuminescent ProteinsMembrane ProteinsMicrotubule-Organizing CenterMicrotubulesMolecular ChaperonesProlactinProtein FoldingProtein TransportQb-SNARE ProteinsReceptors, Thyrotropin-Releasing HormoneTunicamycinConceptsWild-type growth hormoneUnfolded protein responseGolgi trafficEndoplasmic reticulumBeta-COPProtein responseGolgi apparatusWild-type human growth hormonePlasma membrane proteinsGolgi marker beta-COPMicrotubule-organizing centerAmino acids 32Thyrotropin-releasing hormone receptorGolgi fragmentationMembrane proteinsSubcellular localizationGolgi markersCOS7 cellsBiP mRNASecretory proteinsReceptor traffickingHost cellsMembrinMicrotubular arrangementTraffickingAcquisition of Lubrol Insolubility, a Common Step for Growth Hormone and Prolactin in the Secretory Pathway of Neuroendocrine Cells*
Lee M, Zhu Y, Chang J, Dannies P. Acquisition of Lubrol Insolubility, a Common Step for Growth Hormone and Prolactin in the Secretory Pathway of Neuroendocrine Cells*. Journal Of Biological Chemistry 2001, 276: 715-721. PMID: 11024038, DOI: 10.1074/jbc.m008530200.Peer-Reviewed Original ResearchAnimalsAnti-Bacterial AgentsBrefeldin AChloroquineCOS CellsDinitrobenzenesEndoplasmic ReticulumEpidermal Growth FactorEstradiolHuman Growth HormoneHydrogen-Ion ConcentrationInsulinMacrolidesMutationPituitary GlandPolyethylene GlycolsProlactinProtein TransportRatsSecretory VesiclesSolubilitySubstrate SpecificityTumor Cells, CulturedUltracentrifugation
2000
Protein folding and deficiencies caused by dominant-negative mutants of hormones
Dannies P. Protein folding and deficiencies caused by dominant-negative mutants of hormones. Vitamins & Hormones 2000, 58: 1-26. PMID: 10668393, DOI: 10.1016/s0083-6729(00)58019-4.Peer-Reviewed Original Research
1997
Editorial: A New Releasing Factor? with Biotechnology and a Little Bit of Luck
Dannies P. Editorial: A New Releasing Factor? with Biotechnology and a Little Bit of Luck. Endocrinology 1997, 138: 5085-5086. PMID: 9389485, DOI: 10.1210/endo.138.12.5710.Peer-Reviewed Original ResearchInefficient secretion of human H27A-prolactin, a mutant that does not bind Zn2+.
Sun Z, Lee M, Rhee H, Arrandale J, Dannies P. Inefficient secretion of human H27A-prolactin, a mutant that does not bind Zn2+. Endocrinology 1997, 11: 1544-51. PMID: 9280069, DOI: 10.1210/mend.11.10.0002.Peer-Reviewed Original Research
1996
Properties of human prolactin (PRL) and H27A-PRL, a mutant that does not bind Zn++.
Sun Z, Li P, Dannies P, Lee J. Properties of human prolactin (PRL) and H27A-PRL, a mutant that does not bind Zn++. Endocrinology 1996, 10: 265-71. PMID: 8833655, DOI: 10.1210/mend.10.3.8833655.Peer-Reviewed Original ResearchKN-62, a calcium/calmodulin-dependent protein kinase II inhibitor, inhibits high potassium-stimulated prolactin secretion and intracellular calcium increases in anterior pituitary cells
Cui Z, Hidaka H, Dannies P. KN-62, a calcium/calmodulin-dependent protein kinase II inhibitor, inhibits high potassium-stimulated prolactin secretion and intracellular calcium increases in anterior pituitary cells. Biochimica Et Biophysica Acta 1996, 1310: 343-347. PMID: 8599613, DOI: 10.1016/0167-4889(95)00170-0.Peer-Reviewed Original ResearchMeSH Keywords1-(5-Isoquinolinesulfonyl)-2-MethylpiperazineAnimalsCalciumCalcium-Calmodulin-Dependent Protein KinasesCells, CulturedEnzyme InhibitorsFemaleIsoquinolinesKineticsPiperazinesPituitary Gland, AnteriorPotassiumPotassium ChlorideProlactinRatsRats, Sprague-DawleyThyrotropin-Releasing HormoneTime FactorsConceptsAnterior pituitary cellsProlactin secretionCalcium/calmodulin-dependent protein kinase IIPituitary cellsCalmodulin-dependent protein kinase IIKN-04KN-62Rat anterior pituitary cellsVoltage-dependent calcium channelsProtein kinase IICalmodulin-dependent protein kinase II inhibitorKCl-stimulated increasesIntracellular calcium increaseCalcium/calmodulin-dependent protein kinase II inhibitorKinase II inhibitorCalcium channelsCalcium increaseIntracellular Ca2Kinase IISecretionInhibits activationII inhibitorsIC50InhibitorsCells
1995
Biological activity and immunological reactivity of human prolactin mutants
Rhee H, Sun Z, Kim S, Goffin V, Martial J, Dannies P. Biological activity and immunological reactivity of human prolactin mutants. Endocrinology 1995, 136: 4990-4995. PMID: 7588233, DOI: 10.1210/endo.136.11.7588233.Peer-Reviewed Original ResearchConceptsSerine 90Cystine loopBiological activityRat pituitary cell lineHuman PRLPituitary cell lineWild typeCertain fishPRL-3MutantsTryptophan fluorescenceCell linesMutationsFishT mutationCell assayPRL storageImmunological reactivityImmunological propertiesSerineConcentration of ureaActivityConservationSpacial requirementsLoopLack of correlation of distribution of prolactin (PRL) charge isoforms with induction of PRL storage
Mastro R, Dannies P. Lack of correlation of distribution of prolactin (PRL) charge isoforms with induction of PRL storage. Endocrinology 1995, 136: 69-74. PMID: 7828559, DOI: 10.1210/endo.136.1.7828559.Peer-Reviewed Original ResearchConceptsEpidermal growth factorNormal lactotrophsGH4C1 cellsGrowth factorForms of PRLFemale rat pituitary glandsNM epidermal growth factorRat pituitary glandDense core granulesRat pituitary tumor cellsPRL storagePituitary tumor cellsNM estradiolTotal PRLPituitary glandPRLTumor cellsCore granulesInsulinNM insulinLack of correlationLactotrophs
1994
Inhibition of rat prolactin (PRL) storage by coexpression of human PRL.
Arrandale J, Dannies P. Inhibition of rat prolactin (PRL) storage by coexpression of human PRL. Endocrinology 1994, 8: 1083-1090. PMID: 7997234, DOI: 10.1210/mend.8.8.7997234.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAsparagineBiological TransportCell CompartmentationCytoplasmic GranulesEpidermal Growth FactorEstradiolGene ExpressionHumansInsulinModels, MolecularPituitary NeoplasmsProlactinProtein ConformationRatsRecombinant Fusion ProteinsSerineSpecies SpecificityTransfectionTumor Cells, CulturedConceptsHuman PRLRat PRLGH4C1 cellsReceptor-mediated mechanismNM epidermal growth factorSecretory granulesNM estradiolDense-core secretory granulesEpidermal growth factorHormone treatmentPRL storageProlactin storagePRLGrowth factorNM insulinMore ratsUntransfected cellsRatsRegulated pathwayControl culturesCellsInhibitionMarked specificity
1991
Regulation of prolactin storage
Reaves B, Dannies P. Regulation of prolactin storage. Cell Biochemistry And Biophysics 1991, 19: 109. PMID: 1726881, DOI: 10.1007/bf02989884.Peer-Reviewed Original ResearchCa2+ channel agonists enhance thyrotropin-releasing hormone-induced inositol phosphates and prolactin secretion
Pachter J, Law G, Dannies P. Ca2+ channel agonists enhance thyrotropin-releasing hormone-induced inositol phosphates and prolactin secretion. European Journal Of Pharmacology 1991, 195: 373-379. PMID: 1714395, DOI: 10.1016/0014-2999(91)90478-9.Peer-Reviewed Original ResearchMeSH Keywords3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl esterAnimalsCalciumCalcium Channel AgonistsCalcium Channel BlockersCalcium RadioisotopesDihydropyridinesFemaleIn Vitro TechniquesInositol PhosphatesNimodipinePerfusionProlactinPyridinesRatsRats, Inbred StrainsReceptors, PurinergicThyrotropin-Releasing HormoneConceptsBay K 8644Basal prolactin secretionProlactin secretionChannel activator Bay K 8644Potentiation of TRHChannel antagonist nimodipineAnterior pituitary cellsAnterior pituitary tumor cellsEnhancement of basalAccumulation of inositolSDZ 202Antagonist nimodipinePituitary tumor cellsInositol polyphosphate accumulationCGP 28392Dihydropyridine Ca2Hormone secretionChannel agonistDihydropyridine agonistPituitary cellsTRHTumor cellsSecretionGH4C1 cellsPrimary cultures
1990
Prolactin and insulin are targeted to the regulated pathway in GH4C1 cells, but their storage is differentially regulated.
Reaves B, Van Itallie C, Moore H, Dannies P. Prolactin and insulin are targeted to the regulated pathway in GH4C1 cells, but their storage is differentially regulated. Endocrinology 1990, 4: 1017-26. PMID: 2284004, DOI: 10.1210/mend-4-7-1017.Peer-Reviewed Original ResearchConceptsGH4C1 cellsEpidermal growth factorPRL synthesisGrowth factorPreferential increaseCombination of estradiolRegulated pathwayRat pituitary tumor cellsIntracellular PRLPituitary tumor cellsBasal releasePRL releaseIntracellular proinsulinSame time courseHormone treatmentPRL storageTumor cellsProinsulin immunoreactivityMRNA levelsPRLInsulinSame peak heightHormoneProinsulinTreatmentThapsigargin, but not caffeine, blocks the ability of thyrotropin-releasing hormone to release Ca2+ from an intracellular store in GH4C1 pituitary cells
Law G, Pachter J, Thastrup O, Hanley M, Dannies P. Thapsigargin, but not caffeine, blocks the ability of thyrotropin-releasing hormone to release Ca2+ from an intracellular store in GH4C1 pituitary cells. Biochemical Journal 1990, 267: 359-364. PMID: 1692207, PMCID: PMC1131296, DOI: 10.1042/bj2670359.Peer-Reviewed Original ResearchMeSH Keywords3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl esterAnimalsCaffeineCalciumCell LineInositol PhosphatesKineticsNimodipinePituitary NeoplasmsPlants, MedicinalProlactinTerpenesThapsigarginThyrotropin-Releasing HormoneTumor Cells, CulturedConceptsThyrotropin-releasing hormoneGH4C1 pituitary cellsPituitary cellsIntracellular storesGH4C1 cellsAbility of TRHBay K 8644Cytosolic free Ca2Action of thapsigarginInsP3-sensitive storesSustained elevationChannel blockersReceptor levelsTRH stimulationExtracellular Ca2Intracellular Ca2Transient increaseFree Ca2ThapsigarginSubsequent spikesHormoneCell typesCa2CellsEffluxComparison of the Regulation of Carboxypeptidase E and Prolactin in GH4C1 Cells, a Rat Pituitary Cell Line
Flicker L, Reaves B, Das B, Dannies P. Comparison of the Regulation of Carboxypeptidase E and Prolactin in GH4C1 Cells, a Rat Pituitary Cell Line. Neuroendocrinology 1990, 51: 658-663. PMID: 2114002, DOI: 10.1159/000125407.Peer-Reviewed Original ResearchConceptsGH4C1 cellsPituitary cell lineEpidermal growth factorNM thyrotropin-releasing hormoneCarboxypeptidase ECell linesCPE activityGrowth factorThyrotropin-releasing hormoneLevels of prolactinCPE mRNAAnterior pituitary cell lineIntracellular levelsSecretory granulesRat anterior pituitary cell lineRat pituitary cell lineGH4C1 cell lineProlactinControl valuesIntracellular prolactinTreatmentNorthern blot analysisBlot analysisEstradiolInsulin
1989
Ca2+ Transients Induced by Thyrotropin-Releasing Hormone Rapidly Lose Their Ability to Cause Release of Prolactin
Law G, Pachter J, Dannies P. Ca2+ Transients Induced by Thyrotropin-Releasing Hormone Rapidly Lose Their Ability to Cause Release of Prolactin. Endocrinology 1989, 3: 539-546. PMID: 2501668, DOI: 10.1210/mend-3-3-539.Peer-Reviewed Original ResearchConceptsPulses of TRHPRL releasePRL secretionCytosolic free calcium concentrationPost-receptor stepsRat anterior pituitary glandThyrotropin-Releasing HormoneRelease of prolactinIndicator indo-1Anterior pituitary glandFree calcium concentrationRelationship of changesContinuous administrationSustained elevationNM TRHPituitary glandIndo-1TRHFluorescent Ca2Calcium concentrationRefractory stateTransient spikeSecretionMinReleaseAbility of repetitive Ca2+ spikes to stimulate prolactin release is frequency dependent
Law G, Pachter J, Dannies P. Ability of repetitive Ca2+ spikes to stimulate prolactin release is frequency dependent. Biochemical And Biophysical Research Communications 1989, 158: 811-816. PMID: 2537637, DOI: 10.1016/0006-291x(89)92794-0.Peer-Reviewed Original ResearchConceptsProlactin releaseAnterior pituitary cellsRelease of prolactinSustained elevated levelsCytosolic free Ca2Amount of prolactinSerial declinePeak Ca2Prolactin secretionPerifusion systemPituitary cellsIndo-1Fluorescent Ca2Repetitive Ca2Transient increaseFree Ca2Elevated levelsProlactinMM KClCa2CellsCoincident increaseMinutesReleaseHigh frequency