2004
Is there structural specificity in the reversible protein aggregates that are stored in secretory granules?
Keeler C, Hodsdon ME, Dannies PS. Is there structural specificity in the reversible protein aggregates that are stored in secretory granules? Journal Of Molecular Neuroscience 2004, 22: 43-49. PMID: 14742909, DOI: 10.1385/jmn:22:1-2:43.Peer-Reviewed Original ResearchConceptsSecretory granule proteinsMembrane proteinsGranule functionGranule proteinsAmino acid residuesSecretory granulesExcess membraneProtein aggregatesSecretory proteinsAcid residuesProteinStructural specificityResiduesSurface motifsGranulesAggregation processMembraneReversible aggregationSpecificityMotifNMR spectroscopyAggregationAggregatesCellsAccumulationPeptide Hormones, Segregation Mechanism
Dannies P. Peptide Hormones, Segregation Mechanism. 2004, 573-574. DOI: 10.1016/b0-12-475570-4/01000-3.Peer-Reviewed Original ResearchPeptide Hormones, Regulated Secretion
Dannies P. Peptide Hormones, Regulated Secretion. 2004, 561-565. DOI: 10.1016/b0-12-475570-4/00998-7.Peer-Reviewed Original ResearchMembrane fusionSecretory granulesMembrane fusion processVesicular trafficSecretory pathwayProtein hormonesRegulated secretionPlasma membraneLarge dense-core vesiclesDense-core vesiclesVesiclesNeuroendocrine cellsExtracellular spaceCytosolic Ca2Release of hormonesPeptide hormonesMembraneGranulesCellsFusionYeastFusion processCytosolCa2Hormone
2002
Aggregation of Human Wild-Type and H27A-Prolactin in Cells and in Solution: Roles of Zn2+, Cu2+, and pH
Sankoorikal B, Zhu Y, Hodsdon M, Lolis E, Dannies P. Aggregation of Human Wild-Type and H27A-Prolactin in Cells and in Solution: Roles of Zn2+, Cu2+, and pH. Endocrinology 2002, 143: 1302-1309. DOI: 10.1210/en.143.4.1302.Peer-Reviewed Original ResearchAtT20 cellsSecretory granulesFormation of secretory granulesHuman prolactinZn2+-binding siteTransfected AtT20 cellsCores of secretory granulesHuman wild-typeWild-type prolactinAcidic pHCOS cellsRecombinant human prolactinIntracellular compartmentsWild-typeBinding sitesRat prolactinCu2+Neutral pHProlactinRatio of Zn2Concentrations of hormonesAtT20Cells
2001
Concentrating hormones into secretory granules: layers of control
Dannies P. Concentrating hormones into secretory granules: layers of control. Molecular And Cellular Endocrinology 2001, 177: 87-93. PMID: 11377824, DOI: 10.1016/s0303-7207(01)00437-3.Peer-Reviewed Original ResearchConceptsTransport of proteinsCisternal maturation modelSecretory granule proteinsSecretory granulesLayer of controlSecretory pathwayGolgi complexSoluble proteinSmall vesiclesGranule proteinsProteinPassive aggregationMaturation modelProtein hormonesSelective retentionGranulesMajor roleAggregationVesiclesHormonePathwaySortingCells
2000
Protein folding and deficiencies caused by dominant-negative mutants of hormones
Dannies P. Protein folding and deficiencies caused by dominant-negative mutants of hormones. Vitamins & Hormones 2000, 58: 1-26. PMID: 10668393, DOI: 10.1016/s0083-6729(00)58019-4.Peer-Reviewed Original Research
1998
Cell Biology of Secretion
Dannies P. Cell Biology of Secretion. 1998, 3-22. DOI: 10.1002/cphy.cp070101.Peer-Reviewed Original ResearchDocking/fusionCorrect membraneEndocrine cellsMembrane buddingCell biologyMembrane fusionIntracellular transportSynaptic vesiclesDense core granulesSecretory granulesVesiclesEndocytosisNeurotransmitter releaseReconstituted systemExocytosisCore granulesCellsFusion mechanismClathrinYeastCalcium dependenceBuddingBiologyGranulesFusionStabilization of the receptor protein tyrosine phosphatase-like protein ICA512 in GH4C1 cells upon treatment with estradiol, insulin, and epidermal growth factor.
Lee M, Dirkx R, Solimena M, Dannies P. Stabilization of the receptor protein tyrosine phosphatase-like protein ICA512 in GH4C1 cells upon treatment with estradiol, insulin, and epidermal growth factor. Endocrinology 1998, 139: 2727-33. PMID: 9607778, DOI: 10.1210/endo.139.6.6039.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAutoantigensCytoplasmic GranulesDrug StabilityEpidermal Growth FactorEstradiolImmunoblottingImmunologic TechniquesInsulinMembrane ProteinsMicroscopy, ConfocalPeptide FragmentsPrecipitin TestsProtein PrecursorsProtein Tyrosine PhosphatasesRatsReceptor-Like Protein Tyrosine Phosphatases, Class 8Time FactorsTumor Cells, Cultured
1996
KN-62, a calcium/calmodulin-dependent protein kinase II inhibitor, inhibits high potassium-stimulated prolactin secretion and intracellular calcium increases in anterior pituitary cells
Cui Z, Hidaka H, Dannies P. KN-62, a calcium/calmodulin-dependent protein kinase II inhibitor, inhibits high potassium-stimulated prolactin secretion and intracellular calcium increases in anterior pituitary cells. Biochimica Et Biophysica Acta 1996, 1310: 343-347. PMID: 8599613, DOI: 10.1016/0167-4889(95)00170-0.Peer-Reviewed Original ResearchMeSH Keywords1-(5-Isoquinolinesulfonyl)-2-MethylpiperazineAnimalsCalciumCalcium-Calmodulin-Dependent Protein KinasesCells, CulturedEnzyme InhibitorsFemaleIsoquinolinesKineticsPiperazinesPituitary Gland, AnteriorPotassiumPotassium ChlorideProlactinRatsRats, Sprague-DawleyThyrotropin-Releasing HormoneTime FactorsConceptsAnterior pituitary cellsProlactin secretionCalcium/calmodulin-dependent protein kinase IIPituitary cellsCalmodulin-dependent protein kinase IIKN-04KN-62Rat anterior pituitary cellsVoltage-dependent calcium channelsProtein kinase IICalmodulin-dependent protein kinase II inhibitorKCl-stimulated increasesIntracellular calcium increaseCalcium/calmodulin-dependent protein kinase II inhibitorKinase II inhibitorCalcium channelsCalcium increaseIntracellular Ca2Kinase IISecretionInhibits activationII inhibitorsIC50InhibitorsCells
1994
Inhibition of rat prolactin (PRL) storage by coexpression of human PRL.
Arrandale J, Dannies P. Inhibition of rat prolactin (PRL) storage by coexpression of human PRL. Endocrinology 1994, 8: 1083-1090. PMID: 7997234, DOI: 10.1210/mend.8.8.7997234.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAsparagineBiological TransportCell CompartmentationCytoplasmic GranulesEpidermal Growth FactorEstradiolGene ExpressionHumansInsulinModels, MolecularPituitary NeoplasmsProlactinProtein ConformationRatsRecombinant Fusion ProteinsSerineSpecies SpecificityTransfectionTumor Cells, CulturedConceptsHuman PRLRat PRLGH4C1 cellsReceptor-mediated mechanismNM epidermal growth factorSecretory granulesNM estradiolDense-core secretory granulesEpidermal growth factorHormone treatmentPRL storageProlactin storagePRLGrowth factorNM insulinMore ratsUntransfected cellsRatsRegulated pathwayControl culturesCellsInhibitionMarked specificity
1993
Rapid stimulation of rhodamine 123 efflux from multidrug-resistant KB cells by progesterone
Jancis E, Hong-xing C, Carbone R, Hochberg R, Dannies P. Rapid stimulation of rhodamine 123 efflux from multidrug-resistant KB cells by progesterone. Biochemical Pharmacology 1993, 46: 1613-1619. PMID: 7902090, DOI: 10.1016/0006-2952(93)90331-p.Peer-Reviewed Original ResearchConceptsRhodamine 123 effluxMultidrug resistance pumpRhodamine 123Efflux of daunomycinRapid stimulationMultidrug-resistant KB cellsAbsence of progesteroneNon-genomic mechanismsCause of retentionKB cellsMicroM progesteroneProgesteroneCarcinoma cellsPump activityActive steroidsMCF7 cellsStimulationIntracellular bindingEffluxCellsMitochondrial dyeDesoxycorticosteronePromegestoneVerapamilTestosterone
1992
Thyrotropin-releasing hormone-mediated Mn2+ entry in perifused rat anterior pituitary cells
Cui Z, Dannies P. Thyrotropin-releasing hormone-mediated Mn2+ entry in perifused rat anterior pituitary cells. Biochemical Journal 1992, 283: 507-513. PMID: 1575695, PMCID: PMC1131064, DOI: 10.1042/bj2830507.Peer-Reviewed Original ResearchConceptsAnterior pituitary cellsRat anterior pituitary cellsPituitary cellsMicroM dopaminePerifused anterior pituitary cellsIndo-1-loaded cellsReceptor-mediated Ca2Action of TRHContinuous TRH infusionTRH infusionCation entryIntracellular Ca2Indo-1TRHTumor promotorFree mediumG proteinsUnstimulated cellsCell typesDopamineCa2CellsLittle effectInsensitive wavelengthInfusion
1990
Thapsigargin, but not caffeine, blocks the ability of thyrotropin-releasing hormone to release Ca2+ from an intracellular store in GH4C1 pituitary cells
Law G, Pachter J, Thastrup O, Hanley M, Dannies P. Thapsigargin, but not caffeine, blocks the ability of thyrotropin-releasing hormone to release Ca2+ from an intracellular store in GH4C1 pituitary cells. Biochemical Journal 1990, 267: 359-364. PMID: 1692207, PMCID: PMC1131296, DOI: 10.1042/bj2670359.Peer-Reviewed Original ResearchMeSH Keywords3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl esterAnimalsCaffeineCalciumCell LineInositol PhosphatesKineticsNimodipinePituitary NeoplasmsPlants, MedicinalProlactinTerpenesThapsigarginThyrotropin-Releasing HormoneTumor Cells, CulturedConceptsThyrotropin-releasing hormoneGH4C1 pituitary cellsPituitary cellsIntracellular storesGH4C1 cellsAbility of TRHBay K 8644Cytosolic free Ca2Action of thapsigarginInsP3-sensitive storesSustained elevationChannel blockersReceptor levelsTRH stimulationExtracellular Ca2Intracellular Ca2Transient increaseFree Ca2ThapsigarginSubsequent spikesHormoneCell typesCa2CellsEfflux
1989
Ability of repetitive Ca2+ spikes to stimulate prolactin release is frequency dependent
Law G, Pachter J, Dannies P. Ability of repetitive Ca2+ spikes to stimulate prolactin release is frequency dependent. Biochemical And Biophysical Research Communications 1989, 158: 811-816. PMID: 2537637, DOI: 10.1016/0006-291x(89)92794-0.Peer-Reviewed Original ResearchConceptsProlactin releaseAnterior pituitary cellsRelease of prolactinSustained elevated levelsCytosolic free Ca2Amount of prolactinSerial declinePeak Ca2Prolactin secretionPerifusion systemPituitary cellsIndo-1Fluorescent Ca2Repetitive Ca2Transient increaseFree Ca2Elevated levelsProlactinMM KClCa2CellsCoincident increaseMinutesReleaseHigh frequency
1987
Regulation of Prolactin Production and Cell Growth by Estradiol: Difference in Sensitivity to Estradiol Occurs at Level of Messenger Ribonucleic Acid Accumulation*
AMARA J, VAN ITALLIE C, DANNIES P. Regulation of Prolactin Production and Cell Growth by Estradiol: Difference in Sensitivity to Estradiol Occurs at Level of Messenger Ribonucleic Acid Accumulation*. Endocrinology 1987, 120: 264-271. PMID: 3780563, DOI: 10.1210/endo-120-1-264.Peer-Reviewed Original ResearchConceptsPRL productionMaximal stimulationGH4C1 cellsOrder of potencyMessenger ribonucleic acid accumulationBiological effectsBeta-EstradiolCell growthEstrogen concentrationsProlactin productionEthynyl estradiolFull agonistSame receptorEstradiolStimulationEstrogenPRL mRNAEffective concentrationAnalog potencyPotencyCellsRibonucleic acid accumulationMRNA
1986
Hormonal Induction of Secretory Granules in a Pituitary Tumor Cell Line*
SCAMMELL J, BURRAGE T, DANNIES P. Hormonal Induction of Secretory Granules in a Pituitary Tumor Cell Line*. Endocrinology 1986, 119: 1543-1548. PMID: 3530721, DOI: 10.1210/endo-119-4-1543.Peer-Reviewed Original ResearchConceptsGH4C1 cellsIntracellular PRLSecretory granulesCombination of estradiolNumber of granulesPituitary tumor cell linePRL accumulationHormone regimenTumor cell strainsEpidermal growth factorHormone treatmentTumor cell linesPRLGrowth factorControl levelsOccasional granulesCell linesHormonal inductionGHCell strainsCellsGranule numberTreatmentCellular contentStorage granules
1984
Unresponsiveness of GH cells to cyclo(histidyl-proline), a metabolite of thyrotropin releasing hormone
Battaini F, Dannies P, Peterkofsky A. Unresponsiveness of GH cells to cyclo(histidyl-proline), a metabolite of thyrotropin releasing hormone. Life Sciences 1984, 35: 2519-2527. PMID: 6096658, DOI: 10.1016/0024-3205(84)90438-7.Peer-Reviewed Original ResearchDifference in Calcium Requirements for Forskolin-Induced Release of Prolactin from Normal Pituitary Cells and GH4C1 Cells in Culture*
DELBEKE D, SCAMMELI J, DANNIES P. Difference in Calcium Requirements for Forskolin-Induced Release of Prolactin from Normal Pituitary Cells and GH4C1 Cells in Culture*. Endocrinology 1984, 114: 1433-1440. PMID: 6323146, DOI: 10.1210/endo-114-4-1433.Peer-Reviewed Original ResearchConceptsGH4C1 cellsPRL releaseMale rat pituitary glandPrimary culturesNormal cellsNormal pituitary cellsPresence of D600Release of prolactinRat pituitary glandAddition of forskolinIntracellular cAMP concentrationPituitary tumorsFischer ratsPituitary cellsPituitary glandChannel inhibitorsTumor cellsTypes of cellsAdenylate cyclaseD600ForskolinCAMP concentrationCalcium requirementForskolin stimulationCellsDepletion of Pituitary Prolactin by Cysteamine Is due to Loss of Immunological Activity*
SCAMMELL J, DANNIES P. Depletion of Pituitary Prolactin by Cysteamine Is due to Loss of Immunological Activity*. Endocrinology 1984, 114: 712-716. PMID: 6697959, DOI: 10.1210/endo-114-3-712.Peer-Reviewed Original Research
1983
17β-ESTRADIOL HAS A BIPHASIC EFFECT ON GH CELL GROWTH1
AMARA J, DANNIES P. 17β-ESTRADIOL HAS A BIPHASIC EFFECT ON GH CELL GROWTH1. Endocrinology 1983, 112: 1141-1143. PMID: 6822206, DOI: 10.1210/endo-112-3-1141.Peer-Reviewed Original ResearchConceptsHalf-maximal concentrationGH cellsProlactin productionEffects of estradiolPituitary tumor growthDose-dependent decreaseCell numberHigh oestrogen concentrationsRat pituitary tumor cellsPituitary tumor cellsBeta-EstradiolBiphasic effectEstrogen concentrationsTumor growthEstradiolTumor cellsInhibitory effectMaximal concentrationInhibition of growthBiphasic fashionSerumStimulationCell growthHorse serumCells