2024
UBXN9 governs GLUT4-mediated spatial confinement of RIG-I-like receptors and signaling
Harrison A, Yang D, Cahoon J, Geng T, Cao Z, Karginov T, Hu Y, Li X, Chiari C, Qyang Y, Vella A, Fan Z, Vanaja S, Rathinam V, Witczak C, Bogan J, Wang P. UBXN9 governs GLUT4-mediated spatial confinement of RIG-I-like receptors and signaling. Nature Immunology 2024, 25: 2234-2246. PMID: 39567760, DOI: 10.1038/s41590-024-02004-7.Peer-Reviewed Original Research
2022
Signaling network model of cardiomyocyte morphological changes in familial cardiomyopathy
Khalilimeybodi A, Riaz M, Campbell S, Omens J, McCulloch A, Qyang Y, Saucerman J. Signaling network model of cardiomyocyte morphological changes in familial cardiomyopathy. Journal Of Molecular And Cellular Cardiology 2022, 174: 1-14. PMID: 36370475, PMCID: PMC10230857, DOI: 10.1016/j.yjmcc.2022.10.006.Peer-Reviewed Original Research
2021
An ex vivo physiologic and hyperplastic vessel culture model to study intra-arterial stent therapies
Wang J, Kural MH, Wu J, Leiby KL, Mishra V, Lysyy T, Li G, Luo J, Greaney A, Tellides G, Qyang Y, Huang N, Niklason LE. An ex vivo physiologic and hyperplastic vessel culture model to study intra-arterial stent therapies. Biomaterials 2021, 275: 120911. PMID: 34087584, PMCID: PMC9195126, DOI: 10.1016/j.biomaterials.2021.120911.Peer-Reviewed Original ResearchHuman-Induced Pluripotent Stem-Cell-Derived Smooth Muscle Cells Increase Angiogenesis to Treat Hindlimb Ischemia
Gao X, Gao M, Gorecka J, Langford J, Liu J, Luo J, Taniguchi R, Matsubara Y, Liu H, Guo L, Gu Y, Qyang Y, Dardik A. Human-Induced Pluripotent Stem-Cell-Derived Smooth Muscle Cells Increase Angiogenesis to Treat Hindlimb Ischemia. Cells 2021, 10: 792. PMID: 33918299, PMCID: PMC8066461, DOI: 10.3390/cells10040792.Peer-Reviewed Original ResearchConceptsLimb-threatening ischemiaSmooth muscle cellsHindlimb ischemiaFunctional outcomeChronic limb-threatening ischemiaMuscle cellsVascular endothelial growth factor (VEGF) expressionM2-type macrophagesMurine hindlimb ischemia modelNumber of macrophagesGrowth factor expressionLaser Doppler imagingStem cell sourceHindlimb ischemia modelStem cellsConsiderable ethical issuesTranslatable therapyIschemic limbsRenewable stem cell sourcesIschemia modelCapillary densityBlood flowIschemiaNovel treatmentsNude mice
2020
Efficient Differentiation of Human Induced Pluripotent Stem Cells into Endothelial Cells under Xenogeneic-free Conditions for Vascular Tissue Engineering
Luo J, Shi X, Lin Y, Yuan Y, Kural MH, Wang J, Ellis MW, Anderson CW, Zhang SM, Riaz M, Niklason LE, Qyang Y. Efficient Differentiation of Human Induced Pluripotent Stem Cells into Endothelial Cells under Xenogeneic-free Conditions for Vascular Tissue Engineering. Acta Biomaterialia 2020, 119: 184-196. PMID: 33166710, PMCID: PMC8133308, DOI: 10.1016/j.actbio.2020.11.007.Peer-Reviewed Original ResearchConceptsVascular tissue engineeringTissue engineeringSmall-diameter TEVGsDynamic bioreactor systemShear stressBioreactor systemCell alignmentVascular graftsXenogeneic-free conditionsEngineeringEndothelializationTEVGsApplicationsEndothelial cellsConditionsHuman induced pluripotent stem cellsAnimal-derived reagentsXenogeneic-free generation of vascular smooth muscle cells from human induced pluripotent stem cells for vascular tissue engineering
Luo J, Lin Y, Shi X, Li G, Kural MH, Anderson CW, Ellis MW, Riaz M, Tellides G, Niklason LE, Qyang Y. Xenogeneic-free generation of vascular smooth muscle cells from human induced pluripotent stem cells for vascular tissue engineering. Acta Biomaterialia 2020, 119: 155-168. PMID: 33130306, PMCID: PMC8168373, DOI: 10.1016/j.actbio.2020.10.042.Peer-Reviewed Original ResearchConceptsVascular tissue engineeringTissue-engineered vascular graftsTissue engineeringComparable mechanical strengthVascular smooth muscle cellsMechanical strengthSmooth muscle cellsPolyglycolic acid scaffoldsTechnology one stepBiodegradable polyglycolic acid (PGA) scaffoldsXenogeneic-free conditionsAnimal-derived reagentsMuscle cellsVSMC differentiationImmunodeficient mouse modelEngineeringVascular graftsOne-stepStem cellsPluripotent stem cellsMouse modelCollagen depositionComparable capacityBlood vesselsAcid scaffoldsInduced pluripotent stem cell-derived smooth muscle cells increase angiogenesis and accelerate diabetic wound healing
Gorecka J, Gao X, Fereydooni A, Dash BC, Luo J, Lee SR, Taniguchi R, Hsia HC, Qyang Y, Dardik A. Induced pluripotent stem cell-derived smooth muscle cells increase angiogenesis and accelerate diabetic wound healing. Regenerative Medicine 2020, 15: 1277-1293. PMID: 32228292, PMCID: PMC7304438, DOI: 10.2217/rme-2019-0086.Peer-Reviewed Original ResearchConceptsSmooth muscle cellsMuscle cellsDiabetic wound healingWound healingPro-angiogenic cytokinesMurine AdiposeStem cellsType macrophagesCollagen scaffoldsCultured mediumM2-type macrophagesCellsNumber of totalNew candidatesAngiogenesisNude miceDiabetic woundsPromising new candidateScaffoldsHealingCytokinesExpressionSecreteWoundsAdipose
2019
Modular design of a tissue engineered pulsatile conduit using human induced pluripotent stem cell-derived cardiomyocytes
Park J, Anderson CW, Sewanan LR, Kural MH, Huang Y, Luo J, Gui L, Riaz M, Lopez CA, Ng R, Das SK, Wang J, Niklason L, Campbell SG, Qyang Y. Modular design of a tissue engineered pulsatile conduit using human induced pluripotent stem cell-derived cardiomyocytes. Acta Biomaterialia 2019, 102: 220-230. PMID: 31634626, PMCID: PMC7227659, DOI: 10.1016/j.actbio.2019.10.019.Peer-Reviewed Original ResearchConceptsSingle-ventricle cardiac defectsHuman umbilical arteryPluripotent stem cell-derived cardiomyocytesStem cell-derived cardiomyocytesFontan procedureSurgical interventionSVD patientsCell-derived cardiomyocytesFontan conduitTherapeutic potentialEngineered Heart TissueVascular conduitsCongenital disorderDesign strategyVariety of complicationsEfficient electrical conductivitySingle ventricle heartPrimary cardiac fibroblastsFontan circulationHeart failureCorrective surgeryUmbilical arteryPulmonary circulationBiodegradable materialsPulmonary system
2017
Vascular smooth muscle cells derived from inbred swine induced pluripotent stem cells for vascular tissue engineering
Luo J, Qin L, Kural MH, Schwan J, Li X, Bartulos O, Cong XQ, Ren Y, Gui L, Li G, Ellis MW, Li P, Kotton DN, Dardik A, Pober JS, Tellides G, Rolle M, Campbell S, Hawley RJ, Sachs DH, Niklason LE, Qyang Y. Vascular smooth muscle cells derived from inbred swine induced pluripotent stem cells for vascular tissue engineering. Biomaterials 2017, 147: 116-132. PMID: 28942128, PMCID: PMC5638652, DOI: 10.1016/j.biomaterials.2017.09.019.Peer-Reviewed Original ResearchConceptsVascular smooth muscle cellsSmooth muscle cellsPluripotent stem cellsFunctional vascular smooth muscle cellsMassachusetts General Hospital miniature swineMuscle cellsSelf-assembly approachBiodegradable polyglycolic acid (PGA) scaffoldsPrimary vascular smooth muscle cellsSmooth muscle myosin heavy chainMuscle myosin heavy chainVascular tissue engineeringStem cellsTissue engineeringPolyglycolic acid scaffoldsReprogramming factorsVascular diseaseContractile functionVascular constructsImmunodeficient miceOrgan transplantsMiniature swinePreclinical investigationsGreat potentialMyosin heavy chain
2016
Anisotropic engineered heart tissue made from laser-cut decellularized myocardium
Schwan J, Kwaczala AT, Ryan TJ, Bartulos O, Ren Y, Sewanan LR, Morris AH, Jacoby DL, Qyang Y, Campbell SG. Anisotropic engineered heart tissue made from laser-cut decellularized myocardium. Scientific Reports 2016, 6: 32068. PMID: 27572147, PMCID: PMC5004193, DOI: 10.1038/srep32068.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnisotropyCell Culture TechniquesCells, CulturedEmbryonic Stem CellsInduced Pluripotent Stem CellsLasers, GasMechanotransduction, CellularMyocardial ContractionMyocardiumMyocytes, CardiacPolytetrafluoroethyleneRatsSwineTissue EngineeringTissue ScaffoldsTomography, Optical CoherenceTriiodothyronineImplantable tissue-engineered blood vessels from human induced pluripotent stem cells
Gui L, Dash BC, Luo J, Qin L, Zhao L, Yamamoto K, Hashimoto T, Wu H, Dardik A, Tellides G, Niklason LE, Qyang Y. Implantable tissue-engineered blood vessels from human induced pluripotent stem cells. Biomaterials 2016, 102: 120-129. PMID: 27336184, PMCID: PMC4939127, DOI: 10.1016/j.biomaterials.2016.06.010.Peer-Reviewed Original ResearchConceptsVascular smooth muscle cellsVascular diseaseBlood vesselsAlpha-smooth muscle actinSmooth muscle myosin heavy chainActive vascular remodelingSmooth muscle cellsMuscle myosin heavy chainTissue-engineered blood vesselsStem cellsAbundant collagenous matrixPluripotent stem cellsInterposition graftAllogeneic graftsVascular remodelingΑ-SMANude ratsMuscle actinMyosin heavy chainClinical useMuscle cellsFunctional vascular smooth muscle cellsPatientsFunctional tissue-engineered blood vesselGraft
2015
Induced pluripotent stem cell-derived vascular smooth muscle cells: methods and application.
Dash BC, Jiang Z, Suh C, Qyang Y. Induced pluripotent stem cell-derived vascular smooth muscle cells: methods and application. Biochemical Journal 2015, 465: 185-94. PMID: 25559088, PMCID: PMC4436659, DOI: 10.1042/bj20141078.Peer-Reviewed Original Research
2014
Functional Cardiomyocytes Derived from Isl1 Cardiac Progenitors via Bmp4 Stimulation
Cagavi E, Bartulos O, Suh CY, Sun B, Yue Z, Jiang Z, Yue L, Qyang Y. Functional Cardiomyocytes Derived from Isl1 Cardiac Progenitors via Bmp4 Stimulation. PLOS ONE 2014, 9: e110752. PMID: 25522363, PMCID: PMC4270687, DOI: 10.1371/journal.pone.0110752.Peer-Reviewed Original ResearchConceptsCardiac progenitor cellsCardiac repairProliferative abilityProgenitor cellsCell-based cardiac regenerative therapySignificant therapeutic valueCardiac regenerative therapyAdult cardiac progenitor cellsStem cellsCPC culturesHigh proliferative abilityHeart failureCardiac originCardiac differentiationMyocardial infarctionAnterior heart fieldInduction of Bmp4Leading causePotential treatmentRole of BMP4Therapeutic valueCardiac progenitorsUntreated cardiomyocytesProtein expressionRegenerative therapy
2012
Modeling Supravalvular Aortic Stenosis Syndrome With Human Induced Pluripotent Stem Cells
Ge X, Ren Y, Bartulos O, Lee MY, Yue Z, Kim KY, Li W, Amos PJ, Bozkulak EC, Iyer A, Zheng W, Zhao H, Martin KA, Kotton DN, Tellides G, Park IH, Yue L, Qyang Y. Modeling Supravalvular Aortic Stenosis Syndrome With Human Induced Pluripotent Stem Cells. Circulation 2012, 126: 1695-1704. PMID: 22914687, PMCID: PMC3586776, DOI: 10.1161/circulationaha.112.116996.Peer-Reviewed Original ResearchConceptsActin filament bundlesSmooth muscle αSmooth muscle cellsExtracellular signal-regulated kinase 1/2Muscle αFilament bundlesSignal-regulated kinase 1/2Four-nucleotide insertionDisease mechanismsContractile smooth muscle cellsStem cell linesPluripotent stem cellsPluripotent stem cell linePlatelet-derived growth factorRhoA signalingVascular smooth muscle cellsRecombinant proteinsKinase 1/2Elastin geneELN geneWilliams-Beuren syndromeBrdU analysisSupravalvular aortic stenosisStem cellsHigh proliferation rate
2011
High density cultures of embryoid bodies enhanced cardiac differentiation of murine embryonic stem cells
Lee MY, Bozkulak E, Schliffke S, Amos PJ, Ren Y, Ge X, Ehrlich BE, Qyang Y. High density cultures of embryoid bodies enhanced cardiac differentiation of murine embryonic stem cells. Biochemical And Biophysical Research Communications 2011, 416: 51-57. PMID: 22079290, PMCID: PMC3237870, DOI: 10.1016/j.bbrc.2011.10.140.Peer-Reviewed Original ResearchConceptsMurine embryonic stem cellsEmbryonic stem cellsBone morphogenetic proteinEB culturesCardiac differentiationCardiomyocyte productionEmbryoid body culturesStem cellsCardiac-specific genesEarly cardiac developmentCardiogenic growth factorsNK2 transcription factorCardiac regenerative medicineMESC linesTranscription factorsCardiac developmentMorphogenetic proteinsEmbryoid bodiesDifferentiation systemDifferentiation periodFunctional cardiomyocytesHigh-density culturesMyosin light chain 2vRegenerative medicineCell-based therapiesMethods of Cell Purification: A Critical Juncture for Laboratory Research and Translational Science
Amos PJ, Bozkulak E, Qyang Y. Methods of Cell Purification: A Critical Juncture for Laboratory Research and Translational Science. Cells Tissues Organs 2011, 195: 26-40. PMID: 21996576, PMCID: PMC3257814, DOI: 10.1159/000331390.Peer-Reviewed Original ResearchConceptsCell purificationSpecific cell populationsPhenotypic traitsCell biologySurface proteinsGenetic expressionCellular reagentsSpecific cellsCell populationsSorting cellsCell separation strategiesPurificationCellsHeterogeneous mixtureAbility of researchersBiologyTraitsProteinCertain mechanismsExpressionDerivation of functional ventricular cardiomyocytes using endogenous promoter sequence from murine embryonic stem cells
Lee MY, Sun B, Schliffke S, Yue Z, Ye M, Paavola J, Bozkulak EC, Amos PJ, Ren Y, Ju R, Jung YW, Ge X, Yue L, Ehrlich BE, Qyang Y. Derivation of functional ventricular cardiomyocytes using endogenous promoter sequence from murine embryonic stem cells. Stem Cell Research 2011, 8: 49-57. PMID: 22099020, PMCID: PMC3222859, DOI: 10.1016/j.scr.2011.08.004.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAdherens JunctionsAnimalsBacterial ProteinsBase SequenceCadherinsCalciumCell Culture TechniquesCell LineCell SeparationConnexin 43Embryonic Stem CellsFlow CytometryGap JunctionsHeart VentriclesImaging, Three-DimensionalIntegrasesLuminescent ProteinsMiceMyocytes, CardiacMyosin Light ChainsPromoter Regions, GeneticProteinsRNA, UntranslatedConceptsVentricular cardiomyocytesCalcium transientsNeonatal mouse ventricular cardiomyocytesFunctional excitation-contraction couplingCardiac contractile performanceDouble transgenic miceCurrent-clamp recordingsIntracellular calcium transientsExcitation-contraction couplingAction potential characteristicsMouse ventricular cardiomyocytesMyosin light chain 2vFluorescence-activated cell sortingAdrenergic signalingIntracellular calciumContractile performanceClamp recordingsTransgenic miceElectrical stimulationCardiac repairInduction of differentiationIsoproterenol stimulationExpression of YFPMouse linesN-cadherinSmall molecule Wnt inhibitors enhance the efficiency of BMP-4-directed cardiac differentiation of human pluripotent stem cells
Ren Y, Lee MY, Schliffke S, Paavola J, Amos PJ, Ge X, Ye M, Zhu S, Senyei G, Lum L, Ehrlich BE, Qyang Y. Small molecule Wnt inhibitors enhance the efficiency of BMP-4-directed cardiac differentiation of human pluripotent stem cells. Journal Of Molecular And Cellular Cardiology 2011, 51: 280-287. PMID: 21569778, PMCID: PMC3334336, DOI: 10.1016/j.yjmcc.2011.04.012.Peer-Reviewed Original ResearchConceptsHuman iPS cellsAction potential durationHuman iPS cell-derived cardiomyocytesSmall-molecule Wnt inhibitorsIPS cellsPluripotent stem cellsIPS cell-derived cardiomyocytesBMP-4Cardiac disease mechanismsCardiac differentiationCell-derived cardiomyocytesPotential durationBone morphogenetic protein 4Stem cellsWnt inhibitorsCardiomyocyte action potential durationHuman pluripotent stem cellsInduced pluripotent stem cellsHuman induced pluripotent stem cellsDisease mechanismsTranslational cardiac researchIntracellular calcium imagingEfficient cardiac differentiationWnt/β-cateninProduction of cardiomyocytes
2007
The Renewal and Differentiation of Isl1 + Cardiovascular Progenitors Are Controlled by a Wnt/β-Catenin Pathway
Qyang Y, Martin-Puig S, Chiravuri M, Chen S, Xu H, Bu L, Jiang X, Lin L, Granger A, Moretti A, Caron L, Wu X, Clarke J, Taketo MM, Laugwitz KL, Moon RT, Gruber P, Evans SM, Ding S, Chien KR. The Renewal and Differentiation of Isl1 + Cardiovascular Progenitors Are Controlled by a Wnt/β-Catenin Pathway. Cell Stem Cell 2007, 1: 165-179. PMID: 18371348, DOI: 10.1016/j.stem.2007.05.018.Peer-Reviewed Original Research
2004
Myeloproliferative Disease in Mice with Reduced Presenilin Gene Dosage: Effect of γ-Secretase Blockage †
Qyang Y, Chambers SM, Wang P, Xia X, Chen X, Goodell MA, Zheng H. Myeloproliferative Disease in Mice with Reduced Presenilin Gene Dosage: Effect of γ-Secretase Blockage †. Biochemistry 2004, 43: 5352-5359. PMID: 15122901, DOI: 10.1021/bi049826u.Peer-Reviewed Original ResearchMeSH KeywordsAmyloid Precursor Protein SecretasesAnimalsAspartic Acid EndopeptidasesCell LineageColony-Forming Units AssayEndopeptidasesFemaleGene DosageGranulocytesHematopoiesisLeukocyte CountMacrophagesMaleMembrane ProteinsMiceMice, Inbred C57BLMice, KnockoutMyeloproliferative DisordersPresenilin-1Presenilin-2Protease InhibitorsConceptsGamma-secretase activityDisease interventionWild-type splenocytesAlzheimer's disease interventionsAmyloid precursor proteinGranulocyte-macrophage colony-forming unitsGamma-secretase inhibitorsGamma-secretase cleavageGranulocyte infiltrationPotential therapyMyeloproliferative diseaseB lymphocytesBone marrowPS inactivationHematopoietic stem cellsColony-forming unitsGranulocytic cells