2014
Chemokine-coupled β2 integrin–induced macrophage Rac2–Myosin IIA interaction regulates VEGF-A mRNA stability and arteriogenesis
Morrison AR, Yarovinsky TO, Young BD, Moraes F, Ross TD, Ceneri N, Zhang J, Zhuang ZW, Sinusas AJ, Pardi R, Schwartz MA, Simons M, Bender JR. Chemokine-coupled β2 integrin–induced macrophage Rac2–Myosin IIA interaction regulates VEGF-A mRNA stability and arteriogenesis. Journal Of Experimental Medicine 2014, 211: 1957-1968. PMID: 25180062, PMCID: PMC4172219, DOI: 10.1084/jem.20132130.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsArteriesCD18 AntigensDNA PrimersFlow CytometryHumansMiceMice, Inbred C57BLMonocytesNeovascularization, PhysiologicNonmuscle Myosin Type IIARac GTP-Binding ProteinsReal-Time Polymerase Chain ReactionReceptors, CCR2RNA StabilityVascular Endothelial Growth Factor AX-Ray MicrotomographyConceptsMyosin IIASignal transduction eventsHuR translocationRapid nuclearTransduction eventsProteomic analysisProtein HuR.Induction of arteriogenesisMRNA stabilityMRNA stabilizationNovel roleCytosolic translocationMyosin-9ICAM-1 adhesionReceptor engagementDevelopmental vasculogenesisCellular effectorsMolecular triggersTranslocationHeavy chainGrowth factorMyeloid cellsVascular endothelial growth factorKey molecular triggerCCL2 stimulation
2008
Regulation of LKB1/STRAD Localization and Function by E-Cadherin
Sebbagh M, Santoni MJ, Hall B, Borg JP, Schwartz MA. Regulation of LKB1/STRAD Localization and Function by E-Cadherin. Current Biology 2008, 19: 37-42. PMID: 19110428, PMCID: PMC2773019, DOI: 10.1016/j.cub.2008.11.033.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Vesicular TransportAdherens JunctionsAMP-Activated Protein Kinase KinasesAMP-Activated Protein KinasesBlotting, WesternCaco-2 CellsCadherinsCell FractionationDNA PrimersFluorescence Resonance Energy TransferHumansMultiprotein ComplexesPhosphorylationProtein Serine-Threonine KinasesReverse Transcriptase Polymerase Chain ReactionConceptsAdherens junctionsLKB1 complexE-cadherinE-cadherin-mediated adherens junctionsAMPK phosphorylationEpithelial apicobasal polarityCell-matrix contactsCell energy metabolismPseudokinase STRADLKB1 kinaseProtein MO25Apicobasal polarityEpithelial polarityCellular processesFluorescence resonance energy transferFamily kinasesKinase activityTumor suppressionTumor suppressorResonance energy transferKinaseUpstream factorsEnergy metabolismSTRADEpithelial cells
2004
The Novel Cdc42 Guanine Nucleotide Exchange Factor, Zizimin1, Dimerizes via the Cdc42-binding CZH2 Domain*
Meller N, Irani-Tehrani M, Ratnikov BI, Paschal BM, Schwartz MA. The Novel Cdc42 Guanine Nucleotide Exchange Factor, Zizimin1, Dimerizes via the Cdc42-binding CZH2 Domain*. Journal Of Biological Chemistry 2004, 279: 37470-37476. PMID: 15247287, DOI: 10.1074/jbc.m404535200.Peer-Reviewed Original ResearchConceptsExchange factorCdc42 Guanine Nucleotide Exchange FactorGuanine nucleotide exchange factorsRho family small GTPasesDomain-containing proteinsNucleotide exchange factorsMultiple cellular processesCDM proteinsCZH proteinsSmall GTPasesRho proteinsCellular processesCdc42 activationRho-GEFsCdc42Acid regionHomology analysisCritical regulatorZizimin1ProteinPositive cooperativityMutation analysisDimerizationDock180GTPases
2000
Antibody-Induced Activation of β1 Integrin Receptors Stimulates cAMP-Dependent Migration of Breast Cells on Laminin-5
Plopper G, Huff J, Rust W, Schwartz M, Quaranta V. Antibody-Induced Activation of β1 Integrin Receptors Stimulates cAMP-Dependent Migration of Breast Cells on Laminin-5. Archives Of Biochemistry And Biophysics 2000, 4: 129-135. PMID: 11170844, DOI: 10.1006/mcbr.2001.0267.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine Diphosphate RiboseAntibodies, MonoclonalBreast NeoplasmsCell AdhesionCell Adhesion MoleculesCell MovementCells, CulturedCyclic AMPDNA PrimersFemaleHeterotrimeric GTP-Binding ProteinsHumansIntegrin alpha3beta1IntegrinsPertussis ToxinPrecipitin TestsReceptors, LamininSignal TransductionTumor Cells, CulturedVirulence Factors, Bordetella
1994
Differing structural requirements for GTPase-activating protein responsiveness and NADPH oxidase activation by Rac.
Xu X, Barry D, Settleman J, Schwartz M, Bokoch G. Differing structural requirements for GTPase-activating protein responsiveness and NADPH oxidase activation by Rac. Journal Of Biological Chemistry 1994, 269: 23569-23574. PMID: 8089125, DOI: 10.1016/s0021-9258(17)31553-3.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceBinding, CompetitiveDNA PrimersEnzyme ActivationGTPase-Activating ProteinsGTP-Binding ProteinsIn Vitro TechniquesMolecular Sequence DataNADH, NADPH OxidoreductasesNADPH OxidasesProteinsRac GTP-Binding ProteinsRas GTPase-Activating ProteinsRecombinant ProteinsStructure-Activity RelationshipConceptsGTPase-activating proteinsEffector domainFunction of RacGTP/GDP stateInteraction of RasDouble mutationNADPH oxidase activationGAP bindingActin cytoskeletonMembrane rufflingActin assemblyOxidase activationGTP hydrolysisRac-GTPGDP stateWild typeSuperoxide-forming NADPH oxidaseInteraction sitesProtein responsivenessProteinResidues 12MutationsRacRac2Phagocytic leukocytes