2024
Setdb1-loss induces type-I interferons and immune clearance of melanoma.
McGeary M, Damsky W, Daniels A, Lang S, Xu Q, Song E, Huet-Calderwood C, Lou H, Paradkar S, Micevic G, Kaech S, Calderwood D, Turk B, Yan Q, Iwasaki A, Bosenberg M. Setdb1-loss induces type-I interferons and immune clearance of melanoma. Cancer Immunology Research 2024 PMID: 39589394, DOI: 10.1158/2326-6066.cir-23-0514.Peer-Reviewed Original ResearchT cell infiltrationMHC-I expressionType I interferonImmune clearanceCD8+ T cell-dependent mannerIncreased CD8+ T cell infiltrationCD8+ T cell infiltrationDecreased MHC-I expressionAnti-cancer immune responseT cell-dependent mannerCD8+ T cellsDecreased T-cell infiltrationComplete tumor clearanceImmunity to melanomaIncreased melanoma growthInflamed tumor microenvironmentLoss of SETDB1Type I interferon receptorTreatment of melanomaType I interferon signalingWhole-genome CRISPR screenEndogenous retrovirusesType I interferon expressionMetastatic diseaseTumor clearanceThe CUL5 E3 ligase complex negatively regulates central signaling pathways in CD8+ T cells
Liao X, Li W, Zhou H, Rajendran B, Li A, Ren J, Luan Y, Calderwood D, Turk B, Tang W, Liu Y, Wu D. The CUL5 E3 ligase complex negatively regulates central signaling pathways in CD8+ T cells. Nature Communications 2024, 15: 603. PMID: 38242867, PMCID: PMC10798966, DOI: 10.1038/s41467-024-44885-0.Peer-Reviewed Original ResearchConceptsCD8+ T cellsT cellsCancer immunotherapyMouse CD8+ T cellsAnti-tumor immunityTumor growth inhibition abilityAnti-tumor effectsInhibition of neddylationCD8Effector functionsTCR stimulationIL2 signalingCentral signaling pathwaysCore signaling pathwaysEffector activityNegative regulatory mechanismsTranslational implicationsImmunotherapyGrowth inhibition abilityCytokine signalingTCRProteomic alterationsSignaling pathwayCancerCRISPR-based screens
2023
Intracellular tension sensor reveals mechanical anisotropy of the actin cytoskeleton
Amiri S, Muresan C, Shang X, Huet-Calderwood C, Schwartz M, Calderwood D, Murrell M. Intracellular tension sensor reveals mechanical anisotropy of the actin cytoskeleton. Nature Communications 2023, 14: 8011. PMID: 38049429, PMCID: PMC10695988, DOI: 10.1038/s41467-023-43612-5.Peer-Reviewed Original ResearchConceptsF-actin architectureStress fibersCortical actinActin cytoskeletonMolecular tension sensorsF-actin stress fibersF-actin cytoskeletonFilamentous actin cytoskeletonMechanical forcesTension sensorCell divisionCytoskeletonCell migrationExtracellular matrixMyosin inhibitionActinDirection of stretchCellsCell axisUniaxial stretchStretchFRETAuthor Correction: Molecular basis for integrin adhesion receptor binding to p21-activated kinase 4 (PAK4)
Ha B, Yigit S, Natarajan N, Morse E, Calderwood D, Boggon T. Author Correction: Molecular basis for integrin adhesion receptor binding to p21-activated kinase 4 (PAK4). Communications Biology 2023, 6: 794. PMID: 37524913, PMCID: PMC10390574, DOI: 10.1038/s42003-023-05176-4.Peer-Reviewed Original ResearchUse of Ecto-Tagged Integrins to Monitor Integrin Exocytosis and Endocytosis
Huet-Calderwood C, Rivera-Molina F, Toomre D, Calderwood D. Use of Ecto-Tagged Integrins to Monitor Integrin Exocytosis and Endocytosis. Methods In Molecular Biology 2023, 2608: 17-38. PMID: 36653699, PMCID: PMC9999384, DOI: 10.1007/978-1-0716-2887-4_2.ChaptersConceptsΒ1 integrinTotal internal reflection fluorescence microscopyNormal cell adhesionIntegrin adhesion receptorsReflection fluorescence microscopyAdhesion receptorsCell adhesionEndocytosisFluorescence microscopyExocytosisIntegrinsCellsHaloTagPHluorinIntracellular labelingEctoPhotobleachingTagsReceptorsChaseFluorescentAdhesionLabelingMigration
2022
Fibroblasts secrete fibronectin under lamellipodia in a microtubule- and myosin II–dependent fashion
Huet-Calderwood C, Rivera-Molina F, Toomre D, Calderwood D. Fibroblasts secrete fibronectin under lamellipodia in a microtubule- and myosin II–dependent fashion. Journal Of Cell Biology 2022, 222: e202204100. PMID: 36416725, PMCID: PMC9699186, DOI: 10.1083/jcb.202204100.Peer-Reviewed Original ResearchConceptsFN secretionFocal adhesion dynamicsExtracellular matrixFocal adhesion formationSites of exocytosisLive-cell microscopyIntegrin-independent mannerCytoskeletal dynamicsFocal adhesionsAdhesion dynamicsRegulatory componentsMyosin IIIntact microtubulesCell polarizationCell adhesionIntegrin receptorsFN depositionLamellipodiaMicrotubulesFibronectinAdhesion formationNew adhesion formationFibroblastsII-dependent fashionCellsMolecular basis for integrin adhesion receptor binding to p21-activated kinase 4 (PAK4)
Ha B, Yigit S, Natarajan N, Morse E, Calderwood D, Boggon T. Molecular basis for integrin adhesion receptor binding to p21-activated kinase 4 (PAK4). Communications Biology 2022, 5: 1257. PMID: 36385162, PMCID: PMC9669019, DOI: 10.1038/s42003-022-04157-3.Peer-Reviewed Original ResearchConceptsP21-activated kinase 4Integrin adhesion receptorsMolecular basisAdhesion receptorsIntegrin β5Potential cellular rolesIntegrin β tailsKinase 4Membrane-proximal halfSubstrate-binding grooveSubstrate-binding siteSite-directed mutagenesisCellular rolesPhosphoacceptor sitesΒ tailExtracellular ligandsCytoplasmic signalingCytoplasmic tailKinase domainMultiple kinasesIntegrin complexΒ5 integrinsΒ5TailMutagenesisOrganization, dynamics and mechanoregulation of integrin-mediated cell–ECM adhesions
Kanchanawong P, Calderwood DA. Organization, dynamics and mechanoregulation of integrin-mediated cell–ECM adhesions. Nature Reviews Molecular Cell Biology 2022, 24: 142-161. PMID: 36168065, PMCID: PMC9892292, DOI: 10.1038/s41580-022-00531-5.Peer-Reviewed Original ResearchConceptsExtracellular matrixCell-ECM adhesionCell-ECM interactionsLocal extracellular matrixAdhesion maturationAdhesion complexesAnimal cellsBiochemical signalingTransmembrane receptorsAdhesion structuresCell shapeIntegrin familyMolecular natureAge-related dysfunctionAdvanced imaging approachesCharacterization of rearrangementsMechanical forcesSignalingTissue formationAdhesionCytoskeletonMechanoregulationImmune responseImaging approachImproved understandingTousled-like kinase 2 targets ASF1 histone chaperones through client mimicry
Simon B, Lou HJ, Huet-Calderwood C, Shi G, Boggon TJ, Turk BE, Calderwood DA. Tousled-like kinase 2 targets ASF1 histone chaperones through client mimicry. Nature Communications 2022, 13: 749. PMID: 35136069, PMCID: PMC8826447, DOI: 10.1038/s41467-022-28427-0.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceCatalytic DomainCell Cycle ProteinsConserved SequenceCrystallography, X-RayHistonesHumansMolecular ChaperonesMolecular Docking SimulationMolecular MimicryMutagenesisPeptide LibraryPhosphorylationProtein KinasesRecombinant ProteinsSubstrate SpecificityConceptsTousled-like kinaseDNA replication-coupled nucleosome assemblyNuclear serine-threonine kinaseReplication-coupled nucleosome assemblyHistone chaperone proteinsGlobular N-terminal domainProper cell divisionPhosphorylation site motifsSerine-threonine kinaseShort sequence motifsAsf1 histone chaperonesC-terminal tailN-terminal domainHistone chaperonesGenome maintenanceNucleosome assemblySequence motifsChaperone proteinsNon-catalytic interactionsCatalytic domainCell divisionSite motifN-terminusStringent selectivityCell growth
2021
A Small-Scale shRNA Screen in Primary Mouse Macrophages Identifies a Role for the Rab GTPase Rab1b in Controlling Salmonella Typhi Growth
Solano-Collado V, Colamarino RA, Calderwood DA, Baldassarre M, Spanò S. A Small-Scale shRNA Screen in Primary Mouse Macrophages Identifies a Role for the Rab GTPase Rab1b in Controlling Salmonella Typhi Growth. Frontiers In Cellular And Infection Microbiology 2021, 11: 660689. PMID: 33898333, PMCID: PMC8059790, DOI: 10.3389/fcimb.2021.660689.Peer-Reviewed Original ResearchConceptsShRNA screenMouse macrophagesGenome-wide screeningRab GTPasesRab GTPasePrimary mouse macrophagesGTPase Rab1bNext-generation sequencingLife-threatening systemic infectionsUnbiased identificationFluorescent populationsConcept screenIntracellular pathogensPrimary immune cellsRab32Bacterial pathogensRab1bHuman hostPrimary mouseInfected cellsHuman macrophagesImportance of macrophagesSalmonella typhi growthTyphi infectionImmune cellsPPP6C negatively regulates oncogenic ERK signaling through dephosphorylation of MEK
Cho E, Lou HJ, Kuruvilla L, Calderwood DA, Turk BE. PPP6C negatively regulates oncogenic ERK signaling through dephosphorylation of MEK. Cell Reports 2021, 34: 108928. PMID: 33789117, PMCID: PMC8068315, DOI: 10.1016/j.celrep.2021.108928.Peer-Reviewed Original ResearchConceptsProtein kinase cascadeCore oncogenic pathwaysKey negative regulatorOncogenic ERKERK pathway activationCrosstalk regulationCentral kinaseKinase cascadePhosphorylation sitesRegulatory subunitRaf-MEKNegative regulatorERK pathwayDrug targetsOncogenic pathwaysMEKMEK inhibitorsDephosphorylationPathway activationPPP6CPhosphatasePathwayERKHyperphosphorylationCascade
2020
Scaffold association factor B (SAFB) is required for expression of prenyltransferases and RAS membrane association
Zhou M, Kuruvilla L, Shi X, Viviano S, Ahearn IM, Amendola CR, Su W, Badri S, Mahaffey J, Fehrenbacher N, Skok J, Schlessinger J, Turk BE, Calderwood DA, Philips MR. Scaffold association factor B (SAFB) is required for expression of prenyltransferases and RAS membrane association. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 31914-31922. PMID: 33257571, PMCID: PMC7749360, DOI: 10.1073/pnas.2005712117.Peer-Reviewed Original ResearchMeSH KeywordsAlkyl and Aryl TransferasesCell MembraneComputational BiologyCRISPR-Cas SystemsDatasets as TopicDimethylallyltranstransferaseGene Knockdown TechniquesHumansMatrix Attachment Region Binding ProteinsNeoplasmsNuclear Matrix-Associated ProteinsProtein PrenylationProtein SubunitsProto-Oncogene Proteins p21(ras)Receptors, EstrogenConceptsMembrane associationRAS membrane associationFarnesyltransferase inhibitorsPrenylation pathwayGenome-wide CRISPRGTP loadingAlternative prenylationMutant cellsNuclear proteinsKRAS membrane associationsRAS isoformsΑ-subunitGrowth inhibitionExpressionFactor BPathwayAnticancer therapyAlternative therapeutic strategiesPrenyltransferasesRASTherapeutic strategiesCRISPRFarnesyltransferaseMislocalizationPrenylationSignalling through cerebral cavernous malformation protein networks
Su VL, Calderwood DA. Signalling through cerebral cavernous malformation protein networks. Open Biology 2020, 10: 200263. PMID: 33234067, PMCID: PMC7729028, DOI: 10.1098/rsob.200263.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiomarkersCarrier ProteinsDisease ManagementDisease SusceptibilityGenetic Predisposition to DiseaseHemangioma, Cavernous, Central Nervous SystemHumansIntracellular SpaceMutationProtein BindingProtein Interaction Domains and MotifsProtein Interaction MappingProtein Interaction MapsProtein TransportSignal TransductionConceptsCCM proteinsCerebral cavernous malformationsCell junctionalMEKK3-MEK5Protein complexesAdaptor proteinProtein functionSubcellular localizationCytoskeletal reorganizationComplex proteinsProtein networkRhoA-ROCKMolecular basisProtein activityGene expressionFunction mutationsCell adhesionCell contractilityProteinPathwayLeaky blood vesselsCurrent knowledgeDisease pathologyCdc42Recent advancesDifferences in self-association between kindlin-2 and kindlin-3 are associated with differential integrin binding
Kadry YA, Maisuria EM, Huet-Calderwood C, Calderwood DA. Differences in self-association between kindlin-2 and kindlin-3 are associated with differential integrin binding. Journal Of Biological Chemistry 2020, 295: 11161-11173. PMID: 32546480, PMCID: PMC7415974, DOI: 10.1074/jbc.ra120.013618.Peer-Reviewed Original ResearchConceptsKindlin-3Kindlin-2Focal adhesionsIntegrin cytoplasmic domainTransmembrane adhesion receptorsComparative sequence analysisLive-cell imagingAbility of cellsCytoplasmic domainF3 subdomainsMammalian cellsCytoplasmic componentsExtracellular environmentAdhesion receptorsKindlinSequence analysisIntegrin familySelf-associationIntegrin bindingPhysiological importanceMolecular levelPoint mutationsProteinCellsAdhesionSerine phosphorylation of the small phosphoprotein ICAP1 inhibits its nuclear accumulation
Su VL, Simon B, Draheim KM, Calderwood DA. Serine phosphorylation of the small phosphoprotein ICAP1 inhibits its nuclear accumulation. Journal Of Biological Chemistry 2020, 295: 3269-3284. PMID: 32005669, PMCID: PMC7062153, DOI: 10.1074/jbc.ra119.009794.Peer-Reviewed Original ResearchConceptsIntegrin cytoplasmic domain-associated protein-1N-terminal regionNuclear accumulationP21-activated kinase 4Ser-10Nuclear roleSerine phosphorylationNuclear localizationPhosphorylation-mimicking substitutionsNuclear localization signalCell-cell junctionsSer-25Localization signalKRIT1 functionThreonine residuesAdaptor proteinKRIT1 lossSubcellular localizationNeurovascular dysplasiaBlood vessel integrityVascular developmentKinase 4Cultured cellsPhosphorylationProtein 1Chapter 22: Structural and signaling functions of integrins
Kadry YA, Calderwood DA. Chapter 22: Structural and signaling functions of integrins. Biochimica Et Biophysica Acta (BBA) - Biomembranes 2020, 1862: 183206. PMID: 31991120, PMCID: PMC7063833, DOI: 10.1016/j.bbamem.2020.183206.Peer-Reviewed Original ResearchConceptsFunction of integrinsAbility of integrinsTransmembrane adhesion receptorsNon-redundant functionsDifferent integrin heterodimersExtracellular matrix proteinsComplex structural rearrangementsDiverse downstreamCytoskeletal complexMetazoan lifeExtracellular environmentΒ-subunitAdhesion receptorsIntegrin heterodimersIntegrin familyMatrix proteinsCell adhesionIntegrinsStructural rearrangementsHeterodimersRecent advancesSubunitsSignalingProteinFunction
2019
The subcellular localization of type I p21-activated kinases is controlled by the disordered variable region and polybasic sequences
Sun X, Su VL, Calderwood DA. The subcellular localization of type I p21-activated kinases is controlled by the disordered variable region and polybasic sequences. Journal Of Biological Chemistry 2019, 294: 14319-14332. PMID: 31391252, PMCID: PMC6768646, DOI: 10.1074/jbc.ra119.007692.Peer-Reviewed Original ResearchConceptsCell-cell contactCell-cell junctionsPolybasic sequenceP21-activated kinaseSmall GTPases RacVariable regionsCell-cell boundariesPAK regulationDomain organizationCdc42 bindingAdhesion dynamicsCRIB domainGTPases RacSubcellular localizationTruncation mutantsKinase domainKinase effectorsCellular signalsExtensive similaritySequence regionsPAK1Cell adhesionCdc42PAKKinaseFilamin A mediates isotropic distribution of applied force across the actin network
Kumar A, Shutova MS, Tanaka K, Iwamoto DV, Calderwood DA, Svitkina TM, Schwartz MA. Filamin A mediates isotropic distribution of applied force across the actin network. Journal Of Cell Biology 2019, 218: 2481-2491. PMID: 31315944, PMCID: PMC6683746, DOI: 10.1083/jcb.201901086.Peer-Reviewed Original ResearchConceptsTalin tension sensorStress fibersActin networkFilamin ACortical actin networkCortical actin filamentsIntegrin-mediated adhesionActin cytoskeletonFocal adhesionsCortical actinFLNA knockdownActin filamentsTalinKnockdownCell sensingDirection of stretchTension sensorPhysiology of muscleUniaxial stretchForce transmissionCytoskeletonStrainsStretchAdhesionReexpressionCoarse-Grained Simulation of Full-Length Integrin Activation
Bidone TC, Polley A, Jin J, Driscoll T, Iwamoto DV, Calderwood DA, Schwartz MA, Voth GA. Coarse-Grained Simulation of Full-Length Integrin Activation. Biophysical Journal 2019, 116: 1000-1010. PMID: 30851876, PMCID: PMC6428961, DOI: 10.1016/j.bpj.2019.02.011.Peer-Reviewed Original Research
2018
Kindlin-2 interacts with a highly conserved surface of ILK to regulate focal adhesion localization and cell spreading
Kadry YA, Huet-Calderwood C, Simon B, Calderwood DA. Kindlin-2 interacts with a highly conserved surface of ILK to regulate focal adhesion localization and cell spreading. Journal Of Cell Science 2018, 131: jcs221184. PMID: 30254023, PMCID: PMC6215391, DOI: 10.1242/jcs.221184.Peer-Reviewed Original ResearchConceptsIntegrin-linked kinaseFocal adhesion localizationKindlin-2Cell spreadingIntegrin-mediated signalingILK bindingILK mutantPseudokinase domainIntegrin signalingKnockdown cellsAxis downstreamC-lobeCell morphologyMutantsSignalingCentral rolePKDComplete understandingLocalizationFirst personKinaseAdaptorSitesSpeciesIntegrins