2022
De novo emergence of a remdesivir resistance mutation during treatment of persistent SARS-CoV-2 infection in an immunocompromised patient: a case report
Gandhi S, Klein J, Robertson AJ, Peña-Hernández MA, Lin MJ, Roychoudhury P, Lu P, Fournier J, Ferguson D, Mohamed Bakhash SAK, Catherine Muenker M, Srivathsan A, Wunder EA, Kerantzas N, Wang W, Lindenbach B, Pyle A, Wilen CB, Ogbuagu O, Greninger AL, Iwasaki A, Schulz WL, Ko AI. De novo emergence of a remdesivir resistance mutation during treatment of persistent SARS-CoV-2 infection in an immunocompromised patient: a case report. Nature Communications 2022, 13: 1547. PMID: 35301314, PMCID: PMC8930970, DOI: 10.1038/s41467-022-29104-y.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionVirologic responsePersistent SARS-CoV-2 infectionResistance mutationsPre-treatment specimensB-cell deficiencyRemdesivir resistanceRemdesivir therapyViral sheddingCase reportAntiviral agentsPatientsCombinatorial therapyInfectionTherapyWhole-genome sequencingTreatmentImportance of monitoringDe novo emergenceFold increaseRNA-dependent RNA polymeraseNovo emergencePotential benefitsMutationsIndolentHigh-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells
Chen JS, Chow RD, Song E, Mao T, Israelow B, Kamath K, Bozekowski J, Haynes WA, Filler RB, Menasche BL, Wei J, Alfajaro MM, Song W, Peng L, Carter L, Weinstein JS, Gowthaman U, Chen S, Craft J, Shon JC, Iwasaki A, Wilen CB, Eisenbarth SC. High-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells. Science Immunology 2022, 7: eabl5652. PMID: 34914544, PMCID: PMC8977051, DOI: 10.1126/sciimmunol.abl5652.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionSARS-CoV-2Follicular helper cellsB cell responsesHelper cellsAntibody productionCell responsesSARS-CoV-2 vaccinationB-cell receptor sequencingSevere COVID-19Cell receptor sequencingIndependent antibodiesT cell-B cell interactionsViral inflammationAntiviral antibodiesImmunoglobulin class switchingVirus infectionGerminal centersViral infectionClonal repertoireInfectionAntibodiesClass switchingCOVID-19Patients
2017
Using direct antiglobulin test results to reduce unnecessary cold agglutinin testing
Wilen CB, Booth GS, Grossman BJ, Lane WJ, Szklarski PC, Jackups R. Using direct antiglobulin test results to reduce unnecessary cold agglutinin testing. Transfusion 2017, 57: 1480-1484. PMID: 28266038, DOI: 10.1111/trf.14059.Peer-Reviewed Original ResearchConceptsNegative direct antiglobulin testDirect antiglobulin testCold agglutinin diseaseMedical CenterCA testingDirect antiglobulin test resultsElevated cold agglutinin titerRare autoimmune hemolytic anemiaPositive direct antiglobulin testCold-reactive autoantibodiesAutoimmune hemolytic anemiaBarnes-Jewish HospitalMajor academic medical centerCold agglutinin titerUniversity Medical CenterVanderbilt University Medical CenterMassachusetts General HospitalAcademic medical centerDAT resultsRetrospective studyGeneral HospitalAntiglobulin testHemolytic anemiaAgglutinin titersPatients
2016
Altered Virome and Bacterial Microbiome in Human Immunodeficiency Virus-Associated Acquired Immunodeficiency Syndrome
Monaco CL, Gootenberg DB, Zhao G, Handley SA, Ghebremichael MS, Lim ES, Lankowski A, Baldridge MT, Wilen CB, Flagg M, Norman JM, Keller BC, Luévano JM, Wang D, Boum Y, Martin JN, Hunt PW, Bangsberg DR, Siedner MJ, Kwon DS, Virgin HW. Altered Virome and Bacterial Microbiome in Human Immunodeficiency Virus-Associated Acquired Immunodeficiency Syndrome. Cell Host & Microbe 2016, 19: 311-322. PMID: 26962942, PMCID: PMC4821831, DOI: 10.1016/j.chom.2016.02.011.Peer-Reviewed Original ResearchConceptsAnti-retroviral therapyEnteric viromePeripheral CD4 T-cell countLower CD4 T countsCD4 T-cell countHuman immunodeficiency virus (HIV) infectionProgressive HIV infectionT-cell countsImmunodeficiency virus infectionAcquired Immunodeficiency SyndromeHIV-uninfectedUgandan patientsHIV infectionImmunodeficiency syndromeIntestinal translocationDisease progressionVirus infectionART treatmentBacterial microbiomeCell countInfectionGut bacterial communitiesPatientsImmunodeficiencySpecific bacteria
2010
A Maraviroc-Resistant HIV-1 with Narrow Cross-Resistance to Other CCR5 Antagonists Depends on both N-Terminal and Extracellular Loop Domains of Drug-Bound CCR5
Tilton JC, Wilen CB, Didigu CA, Sinha R, Harrison JE, Agrawal-Gamse C, Henning EA, Bushman FD, Martin JN, Deeks SG, Doms RW. A Maraviroc-Resistant HIV-1 with Narrow Cross-Resistance to Other CCR5 Antagonists Depends on both N-Terminal and Extracellular Loop Domains of Drug-Bound CCR5. Journal Of Virology 2010, 84: 10863-10876. PMID: 20702642, PMCID: PMC2950574, DOI: 10.1128/jvi.01109-10.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceBinding SitesCCR5 Receptor AntagonistsCell LineCohort StudiesCyclohexanesDNA PrimersDrug Resistance, ViralHIV Envelope Protein gp120HIV Fusion InhibitorsHIV InfectionsHIV-1HumansIn Vitro TechniquesMaravirocModels, BiologicalMutant ProteinsMutationPeptide FragmentsProtein Structure, TertiaryReceptors, CCR5TriazolesConceptsCCR5 antagonistsLow CCR5 levelsTreatment-experienced patientsPlasma viral RNACCR5 antagonist maravirocCourse of treatmentHigh-level resistanceMVC resistanceMVC treatmentVirologic failureExtracellular loopCCR5 levelsTreatment regimensCross-resistance profilesCXCR4 useV3 loopCCR5 useHIV entryHIV-1Viral envelope proteinsCCR5V4 loopsAntagonistMaravirocPatients