2024
An efficient multiplex approach to CRISPR/Cas9 gene editing in citrus
Sagawa C, Thomson G, Mermaz B, Vernon C, Liu S, Jacob Y, Irish V. An efficient multiplex approach to CRISPR/Cas9 gene editing in citrus. Plant Methods 2024, 20: 148. PMID: 39342225, PMCID: PMC11438372, DOI: 10.1186/s13007-024-01274-4.Peer-Reviewed Original ResearchSimultaneous editing of multiple genesMultiple genesGene editingEudicot plant speciesPol III promotersTarget multiple genesGenus fallRPS5A promoterCRISPR/Cas9 gene editingCRISPR/Cas9-mediated gene editingMultiplex gene editingGenome engineeringIII promotersGenetic screeningPlant speciesCas9 endonucleaseEditing efficiencyGene editing efficiencySgRNAGenesArabidopsisUBQ10SpeciesSimultaneous editingPromoterOptimization of in planta methodology for genome editing and transformation in Citrus
Khadgi A, Sagawa C, Vernon C, Mermaz B, Irish V. Optimization of in planta methodology for genome editing and transformation in Citrus. Frontiers In Plant Science 2024, 15: 1438031. PMID: 39070914, PMCID: PMC11272483, DOI: 10.3389/fpls.2024.1438031.Peer-Reviewed Original ResearchCitrus cultivarsCommercial citrus cultivarsPlanta transformation protocolPineapple sweet orangeTissue cultureGene-edited linesLisbon lemonSweet orangeCulture-based approachesPlanta transformationRecalcitrant speciesCitrus plantsCultivarsGenetic transformationTransformation protocolPlant speciesCRISPR/Cas9 constructsTransformation efficiencyCitrusGenetic changesGenome editingAseptic conditionsRegeneration rateLemonPlantsAn epigenetic timer regulates the transition from cell division to cell expansion during Arabidopsis petal organogenesis
Huang R, Irish V. An epigenetic timer regulates the transition from cell division to cell expansion during Arabidopsis petal organogenesis. PLOS Genetics 2024, 20: e1011203. PMID: 38442104, PMCID: PMC10942257, DOI: 10.1371/journal.pgen.1011203.Peer-Reviewed Original ResearchConceptsCell division to cell expansionCell divisionCell expansionRemodeling of chromatin accessibilityResponse to environmental changesRNA polymerase activityPlant developmental timingRegulate developmental eventsMultiple cell divisionsDownstream direct targetsCorepressor TOPLESSArabidopsis petalsChromatin accessibilityHistone modificationsPetal developmentEpigenetic stateTranscriptional repressorPetal organogenesisPolymerase activityEpigenetic memoryPetal primordiaPlant organogenesisCell cycleEpigenetic factorsControl organogenesis
2023
Cellulose assembles into helical bundles of uniform handedness in cell walls with abnormal pectin composition
Saffer A, Baskin T, Verma A, Stanislas T, Oldenbourg R, Irish V. Cellulose assembles into helical bundles of uniform handedness in cell walls with abnormal pectin composition. The Plant Journal 2023, 116: 855-870. PMID: 37548081, PMCID: PMC10592269, DOI: 10.1111/tpj.16414.Peer-Reviewed Original ResearchConceptsCell wallPlant cellsWild typeMost plant cellsPetal epidermal cellsDirect morphogenesisHelical bundlePetal cellsRemarkable diversityEpidermal cellsLarger macrofibrilsPectin compositionCell morphologyUniform handednessPolysaccharide componentsMorphogenesisMutantsConsistent chiralityHelical twistInteresting exceptionsRhamnogalacturonanCellsRight-handed helixEmergent propertiesPrimary determinantMy favourite flowering image: Arabidopsis conical petal epidermal cells
Irish V. My favourite flowering image: Arabidopsis conical petal epidermal cells. Journal Of Experimental Botany 2023, 74: 2940-2943. PMID: 36932972, DOI: 10.1093/jxb/erad106.Peer-Reviewed Original Research
2021
Do Epigenetic Timers Control Petal Development?
Huang R, Huang T, Irish V. Do Epigenetic Timers Control Petal Development? Frontiers In Plant Science 2021, 12: 709360. PMID: 34295349, PMCID: PMC8290480, DOI: 10.3389/fpls.2021.709360.Peer-Reviewed Original ResearchGene expressionEpigenetic factorsSuch regulatory mechanismsPetal developmentPlant organogenesisHeritable changesChromatin structureDNA accessibilityEpigenetic controlHistone modificationsEpigenetic modificationsPetal growthDNA methylationDevelopmental timingDevelopmental eventsRegulatory mechanismsDevelopmental transitionsMolecular mechanismsCell typesEnvironmental changesDevelopmental progressionOrganogenesisSuch modificationsRecent studiesExpression
2020
Reprogramming of Stem Cell Activity to Convert Thorns into Branches
Zhang F, Rossignol P, Huang T, Wang Y, May A, Dupont C, Orbovic V, Irish VF. Reprogramming of Stem Cell Activity to Convert Thorns into Branches. Current Biology 2020, 30: 2951-2961.e5. PMID: 32559443, DOI: 10.1016/j.cub.2020.05.068.Peer-Reviewed Original ResearchConceptsGene networksShoot stem cell nicheStem cellsTCP transcription factorsExpression of WUSCHELStem cell quiescenceStem cell nicheStem cell activityStem cell proliferationCitrus genesAngiosperm speciesPlant architectureShoot apicalApical meristemTranscription factorsCell nicheCell quiescenceMeristemFunction of componentsWUSCHELCell proliferationConcomitant conversionCrop yieldFunction resultsCells
2018
Vivian Irish
Irish V. Vivian Irish. Current Biology 2018, 28: r641-r642. DOI: 10.1016/j.cub.2018.04.066.Peer-Reviewed Original Research
2017
Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress
LeBlanc C, Zhang F, Mendez J, Lozano Y, Chatpar K, Irish V, Jacob Y. Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. The Plant Journal 2017, 93: 377-386. PMID: 29161464, DOI: 10.1111/tpj.13782.Peer-Reviewed Original ResearchConceptsCRISPR/Green fluorescent protein (GFP) reporter geneCRISPR/Cas9 systemFluorescent protein reporter geneCRISPR/Cas9Off-target mutationsArabidopsis plantsEukaryotic genomesDifferent organismsSomatic tissuesCitrus plantsCas9 systemDNA breaksReporter geneTarget mutagenesisTargeted mutationsMutation rateMutagenesisImportance of temperatureArabidopsisHeat stressPlantsMutationsQuantitative assayEukaryotesThe ABC model of floral development
Irish V. The ABC model of floral development. Current Biology 2017, 27: r887-r890. PMID: 28898659, DOI: 10.1016/j.cub.2017.03.045.Peer-Reviewed Original ResearchRhamnose-Containing Cell Wall Polymers Suppress Helical Plant Growth Independently of Microtubule Orientation
Saffer AM, Carpita NC, Irish VF. Rhamnose-Containing Cell Wall Polymers Suppress Helical Plant Growth Independently of Microtubule Orientation. Current Biology 2017, 27: 2248-2259.e4. PMID: 28736166, DOI: 10.1016/j.cub.2017.06.032.Peer-Reviewed Original ResearchConceptsCell wall polymersPlant growthWall polymersMicrotubule orientationPectic polysaccharide rhamnogalacturonanHelical growthMost plant organsEpidermal cell expansionCell wall compositionCortical microtubule arraysPetal epidermal cellsMutant rootsPlant cellsPlant speciesRhamnose synthasePlant organsWall compositionMicrotubule arraysEpidermal cellsCell expansionImportant functionsMutantsNovel sourceMutationsSpecific organsPetal Development: A twist in fate
Saffer A, Carpita N, Irish V. Petal Development: A twist in fate. Cells And Development 2017, 145: s13. DOI: 10.1016/j.mod.2017.04.561.Peer-Reviewed Original ResearchCorrigendum
Li J, Wang Y, Zhang Y, Wang W, Irish V, Huang T. Corrigendum. Journal Of Experimental Botany 2017, 68: 3033-3033. PMID: 28207071, PMCID: PMC5853423, DOI: 10.1093/jxb/erx036.Peer-Reviewed Original Research
2015
Gene networks controlling petal organogenesis
Huang T, Irish VF. Gene networks controlling petal organogenesis. Journal Of Experimental Botany 2015, 67: 61-68. PMID: 26428062, DOI: 10.1093/jxb/erv444.Peer-Reviewed Original ResearchConceptsPetal organogenesisGene networksNumber of genesOrgan initiationSuch genesDevelopmental biologyPetal growthBiggest unanswered questionsEnvironmental perturbationsOrgan morphologyGrowth controlPetalsOrganogenesisModel systemGenesRecent studiesGrowthOrgan systemsBiologyUnanswered questionsPlantsTemporal Control of Plant Organ Growth by TCP Transcription Factors
Huang T, Irish VF. Temporal Control of Plant Organ Growth by TCP Transcription Factors. Current Biology 2015, 25: 1765-1770. PMID: 26073137, DOI: 10.1016/j.cub.2015.05.024.Peer-Reviewed Original ResearchConceptsPost-mitotic cell expansionCell divisionArabidopsis petalsPetal developmentCell expansionCIN-TCP genesTCP transcription factorsZinc finger transcriptional repressorPlant organ growthCell cycle progressionPetal organogenesisTranscriptional repressorOrgan formRepression resultsTranscription factorsPetal initiationOrgan growthDevelopmental eventsLamina growthExcellent modelTemporal controlCell proliferationPetalsDivisionTurn act
2014
A dexamethasone-inducible gene expression system is active in Citrus plants
Rossignol P, Orbović V, Irish V. A dexamethasone-inducible gene expression system is active in Citrus plants. Scientia Horticulturae 2014, 172: 47-53. DOI: 10.1016/j.scienta.2014.02.041.Peer-Reviewed Original ResearchGene expression systemExpression systemΒ-glucuronidase (GUS) reporter geneInducible gene expression systemSynthetic transcription factorsGene of interestPromoter driving expressionCrop plantsGene functionTransgenic approachesTranscription factorsCitrus plantsNew traitsReporter geneCitrus cultivarsPlantsTransgene activityGenesSynthetic glucocorticoid dexamethasoneTiming of activityGlucocorticoid receptorSuch manipulationsGlucocorticoid dexamethasoneLhGRTraits
2012
RBE controls microRNA164 expression to effect floral organogenesis
Huang T, López-Giráldez F, Townsend JP, Irish VF. RBE controls microRNA164 expression to effect floral organogenesis. Development 2012, 139: 2161-2169. PMID: 22573623, DOI: 10.1242/dev.075069.Peer-Reviewed Original ResearchConceptsCUP-SHAPED COTYLEDON1Zinc finger transcriptional repressorKey transcriptional regulatorMiR164 expressionPetal organogenesisArabidopsis flowersPetal developmentPlant developmentEffector genesTranscriptional regulatorsTranscriptional repressorFloral organogenesisGene productsDevelopmental eventsConcomitant regulationGenesOrgan boundariesOrganogenesisExpressionMiR164cCUC2RepressorBoundary specificationPromoterFlowers
2010
The Arabidopsis Floral Homeotic Proteins APETALA3 and PISTILLATA Negatively Regulate the BANQUO Genes Implicated in Light Signaling
Mara CD, Huang T, Irish VF. The Arabidopsis Floral Homeotic Proteins APETALA3 and PISTILLATA Negatively Regulate the BANQUO Genes Implicated in Light Signaling. The Plant Cell 2010, 22: 690-702. PMID: 20305124, PMCID: PMC2861465, DOI: 10.1105/tpc.109.065946.Peer-Reviewed Original ResearchConceptsPetal identityBHLH transcription factorsDevelopmental signaling pathwaysSecond whorl organsBHLH proteinsLight signalingHelix proteinsAPETALA3Light responseTranscription factorsGene productsPistillataChlorophyll levelsSignaling pathwaysGenesRegulatory processesProteinAppropriate regulationHFR1ArabidopsisPhotomorphogenesisMutantsSepalsCarpelsPhytochrome
2009
Petal development: Variations on a theme
Irish V. Petal development: Variations on a theme. Developmental Biology 2009, 331: 399. DOI: 10.1016/j.ydbio.2009.05.054.Peer-Reviewed Original Research
2008
An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development
Chae E, Tan Q, Hill TA, Irish VF. An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development. Development 2008, 135: 1235-1245. PMID: 18287201, DOI: 10.1242/dev.015842.Peer-Reviewed Original ResearchConceptsUNUSUAL FLORAL ORGANSAP3 promoterLFY activityTranscription factorsProtein degradationFloral homeotic gene expressionLEAFY transcription factorFloral homeotic genesHomeotic gene expressionTranscriptional repressor domainF-box proteinsSCF ubiquitin ligaseF-box componentAPETALA3 (AP3) geneHomeotic genesRepressor domainFloral organsFlower developmentPlant speciesTranscriptional complexPlants flowerProtein actsFloral developmentUbiquitin ligaseEndogenous signals