Vanessa Scanlon, PhD
Assistant Professor AdjunctCards
Appointments
Contact Info
About
Titles
Assistant Professor Adjunct
Biography
Vanessa Scanlon is an Assistant Professor at the University of Connecticut. She is passionate about science and strengthening the pipeline of underrepresented individuals to successful research careers. Her research interests include hematopoiesis and the bone marrow microenvironment. In her spare time, she enjoys live music, gardening and star gazing.
Appointments
Laboratory Medicine
Assistant Professor AdjunctPrimary
Other Departments & Organizations
Education & Training
- PhD
- UConn Health, Biomedical Science (2015)
- BS
- UConn, MCB (2006)
- BS
- UConn, DGS (2006)
Research
Overview
Currently, I work on understanding extrinsic mechanisms that underly hematopoietic progenitor cell fate decisions. I have developed a novel method for time-lapse microscopy of bipotent progenitors dividing and committing to two potential lineages. I'm also interested in developing 3D engineered in vitro cell culture models to further investigate spatial regulation between cells of the bone marrow microenvironment.
I also study the function of specific domains within a co-transcriptional activator during megakaryocytopoiesis.
Medical Subject Headings (MeSH)
ORCID
0000-0002-5569-6901
Research at a Glance
Yale Co-Authors
Publications Timeline
Diane Krause, MD, PhD
Madeline Mayday
Betty R. Lawton, PhD
Karin Finberg, MD, PhD
Larisa Lozovatsky
Max Carlino
Publications
Featured Publications
Multiparameter analysis of timelapse imaging reveals kinetics of megakaryocytic erythroid progenitor clonal expansion and differentiation
Scanlon VM, Thompson EN, Lawton BR, Kochugaeva M, Ta K, Mayday MY, Xavier-Ferrucio J, Kang E, Eskow NM, Lu YC, Kwon N, Laumas A, Cenci M, Lawrence K, Barden K, Larsuel ST, Reed FE, Peña-Carmona G, Ubbelohde A, Lee JP, Boobalan S, Oppong Y, Anderson R, Maynard C, Sahirul K, Lajeune C, Ivathraya V, Addy T, Sanchez P, Holbrook C, Van Ho AT, Duncan JS, Blau HM, Levchenko A, Krause DS. Multiparameter analysis of timelapse imaging reveals kinetics of megakaryocytic erythroid progenitor clonal expansion and differentiation. Scientific Reports 2022, 12: 16218. PMID: 36171423, PMCID: PMC9519589, DOI: 10.1038/s41598-022-19013-x.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsMegakaryocytic-erythroid progenitorsFate specificationLineage commitmentUnderstanding of hematopoiesisProgenitor cell biologyPrimary human hematopoietic progenitorsSingle-cell trackingSingle-cell assaysSingle-cell levelHuman hematopoietic progenitorsProgenitor cell dynamicsLineage specificationCell fateColony-forming unit assaysTimelapse imagingSitu fluorescence stainingCell biologyLineage tracingDivision rateCytokine thrombopoietinHematopoietic progenitorsProgenitorsFluorescence stainingCell dynamicsUnit assays
2024
3109 – OPTIMIZING AND SIMPLIFYING READOUT OF HEMATOPOIETIC COLONY FORMING UNIT (CFU) ASSAYS
Krause D, Thompson E, Carlino M, Scanlon V. 3109 – OPTIMIZING AND SIMPLIFYING READOUT OF HEMATOPOIETIC COLONY FORMING UNIT (CFU) ASSAYS. Experimental Hematology 2024, 137: 104431. DOI: 10.1016/j.exphem.2024.104431.Peer-Reviewed Original ResearchConceptsColony forming unitsCell typesProportion of coloniesFluorescence activated cell sortingColony morphologyForming unitsColony typesIdentification of basophilsLineagesColony forming unit assayCell morphologyCell sortingColoniesIndividual stemsSemisolid mediumMK cellsMultipotent progenitorsDetect GProgenitor populationsLineage potentialCommon myeloid progenitorsCellsIL-3Megakaryocytic lineageCombination of G-CSF
2023
Assay optimization for the objective quantification of human multilineage colony-forming units
Thompson E, Carlino M, Scanlon V, Grimes H, Krause D. Assay optimization for the objective quantification of human multilineage colony-forming units. Experimental Hematology 2023, 124: 36-44.e3. PMID: 37271449, PMCID: PMC10527702, DOI: 10.1016/j.exphem.2023.05.007.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsFluorescence-activated cell sortingLineage potentialCommon myeloid progenitorsHigh-throughput microscopyMultilineage colony-forming unitsProportion of coloniesSpecific growth factorsCFU assayColony-forming unit assaysMultipotent progenitorsProgenitor populationsLineage outputSitu immunofluorescenceMegakaryocytic lineageMK cellsMegakaryocytic cellsCell typesMyeloid progenitorsProgenitor cellsCell morphologyCell sortingUnit assaysIL-3Colony typesCulture conditionsSATB1 Chromatin Loops Regulate Megakaryocyte/Erythroid Progenitor Expansion by Facilitating HSP70 and GATA1 Induction
Wilkes M, Chae H, Scanlon V, Cepika A, Wentworth E, Saxena M, Eskin A, Chen Z, Glader B, Roncarolo M, Nelson S, Sakamoto K. SATB1 Chromatin Loops Regulate Megakaryocyte/Erythroid Progenitor Expansion by Facilitating HSP70 and GATA1 Induction. Stem Cells 2023, 41: 560-569. PMID: 36987811, PMCID: PMC10267687, DOI: 10.1093/stmcls/sxad025.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsMegakaryocyte/erythroid progenitorsSpecial AT-rich sequence-binding protein 1Diamond-Blackfan anemiaInherited bone marrow failure syndromeChromatin loopsInduction of HSP70Hsp70 geneShock protein 70Progenitor expansionBiological functionsEarly myeloid progenitorsBone marrow failure syndromesErythroid factorsErythroid progenitorsMyeloid progenitorsMarrow failure syndromesProtein 1Protein 70Blackfan anemiaHSP70Specific sitesProgenitorsCell modelSATB1 expressionInduction
2022
Structure-function analysis of the role of megakaryoblastic leukemia 1 in megakaryocyte polyploidization
Reed F, Eskow N, Min E, Carlino M, Mancuso R, Kwon N, Smith E, Larsuel S, Wang L, Scanlon V, Krause D. Structure-function analysis of the role of megakaryoblastic leukemia 1 in megakaryocyte polyploidization. Haematologica 2022, 107: 2972-2976. PMID: 36453520, PMCID: PMC9713552, DOI: 10.3324/haematol.2021.280499.Peer-Reviewed Original ResearchAltmetricStructure-function analysis of the role of megakaryoblastic leukemia 1 in megakaryocyte polyploidization.
Reed FE, Eskow NM, Min E, Carlino M, Mancuso R, Kwon N, Smith EC, Larsuel ST, Wang L, Scanlon V, Krause DS. Structure-function analysis of the role of megakaryoblastic leukemia 1 in megakaryocyte polyploidization. Haematologica 2022 PMID: 36005559.Peer-Reviewed Original ResearchDownregulation of SATB1 by miRNAs reduces megakaryocyte/erythroid progenitor expansion in preclinical models of Diamond–Blackfan anemia
Wilkes MC, Scanlon V, Shibuya A, Cepika AM, Eskin A, Chen Z, Narla A, Glader B, Roncarolo MG, Nelson SF, Sakamoto KM. Downregulation of SATB1 by miRNAs reduces megakaryocyte/erythroid progenitor expansion in preclinical models of Diamond–Blackfan anemia. Experimental Hematology 2022, 111: 66-78. PMID: 35460833, PMCID: PMC9255422, DOI: 10.1016/j.exphem.2022.04.005.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsMegakaryocyte/erythroid progenitorsDiamond-Blackfan anemiaRibosomal proteinsPathogenesis of DBAErythroid progenitorsHuman hematopoietic stemInherited bone marrow failure syndromeChromatin regulatorsRibosomal insufficiencyErythroid differentiationProgenitor expansionBone marrow failure syndromesCancer predispositionHematopoietic stemMiR-30MiR-34Molecular pathwaysMegakaryocyte expansionMarrow failure syndromesNormal erythropoiesisProgenitor cellsCoordinated actionSATB1ProgenitorsDifferentiation
2021
SATB1 Regulates Chromatin Organization and HSP70 Expression in Early Erythropoiesis and Is Downregulated in Models of Diamond Blackfan Anemia
Wilkes M, Shibuya A, Scanlon V, Chae H, Narla A, Sakamoto K. SATB1 Regulates Chromatin Organization and HSP70 Expression in Early Erythropoiesis and Is Downregulated in Models of Diamond Blackfan Anemia. Blood 2021, 138: 2189. DOI: 10.1182/blood-2021-153814.Peer-Reviewed Original ResearchConceptsDiamond-Blackfan anemiaInduction of HSP70Early erythropoiesisHsp70 geneErythroid transcription factor GATA1Ribosomal protein RPS19Transcription factor GATA1Blackfan anemiaBulk RNA-seqCritical molecular mechanismsCord blood HSPCsChromatin organizationChromatin loopsRibosomal genesHematopoietic stem cellsRNA-seqSpecial ATUncommitted progenitorsErythroid differentiationProgenitor expansionProximal promoterErythroid defectsMolecular mechanismsRare genetic diseaseAnemia phenotypeSingle-Cell Tracking By Time Lapse Imaging Confirms Thrombopoietin Promotes Megakaryocytic-Erythroid Progenitor Self Renewal, but Does Not Instruct Lineage Commitment
Scanlon V, Kochugaeva M, Lawton B, Xavier-Ferrucio J, Kang E, Eskow N, Lu Y, Kwon N, Laumas A, Cenci M, Lawrence K, Barden K, Larsuel S, Reed F, Pena-Carmona G, Ubbelohde A, Lee J, Boobalan S, Oppong Y, Anderson R, Maynard C, Sahirul K, Lajeune C, Ivathraya V, Addy T, Sanchez P, Holbrook C, Van Ho A, Blau H, Levchenko A, Krause D. Single-Cell Tracking By Time Lapse Imaging Confirms Thrombopoietin Promotes Megakaryocytic-Erythroid Progenitor Self Renewal, but Does Not Instruct Lineage Commitment. Blood 2021, 138: 3270. DOI: 10.1182/blood-2021-154360.Peer-Reviewed Original ResearchCitationsConceptsAbsence of thrombopoietinTime-lapse imagingLineage commitmentSelf-renewal divisionsCell typesMK lineageSelf-RenewalLineage-restricted progenitor cellsSpecific progenitor populationsProgenitor self-renewalProgenitor cellsSingle-cell trackingSpecific cell typesColony typesE lineageLineage choiceProgenitor commitmentCellular processesDaughter cellsLineage potentialCultured megakaryocytesProgenitor populationsCell statesDivision rateMegakaryocytic maturationMRTFA: A critical protein in normal and malignant hematopoiesis and beyond
Reed F, Larsuel ST, Mayday MY, Scanlon V, Krause DS. MRTFA: A critical protein in normal and malignant hematopoiesis and beyond. Journal Of Biological Chemistry 2021, 296: 100543. PMID: 33722605, PMCID: PMC8079280, DOI: 10.1016/j.jbc.2021.100543.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsMalignant hematopoiesisActin cytoskeleton dynamicsCritical cellular functionsResponse factorSerum response factorTranscription factor ACellular rolesImmediate early genesProtein partnersTranscriptional regulationCytoskeleton dynamicsCellular functionsTranscriptional targetsTranscription factorsCytoskeletal proteinsCritical proteinsMRTFAEarly genesCell typesChromosomal translocationsHematopoietic cellsCell growthFactor AHematopoiesisMuscle cells
News & Links
Media
- The entire colony arose from a single human bipotent Megakaryocytic-Erythroid Progenitor (MEP). Megakaryocyte-committed cells are expressing CD41 (green fluorescence) and CD235a (red fluorescence).