2024
SARS-CoV-2-related bat viruses evade human intrinsic immunity but lack efficient transmission capacity
Peña-Hernández M, Alfajaro M, Filler R, Moriyama M, Keeler E, Ranglin Z, Kong Y, Mao T, Menasche B, Mankowski M, Zhao Z, Vogels C, Hahn A, Kalinich C, Zhang S, Huston N, Wan H, Araujo-Tavares R, Lindenbach B, Homer R, Pyle A, Martinez D, Grubaugh N, Israelow B, Iwasaki A, Wilen C. SARS-CoV-2-related bat viruses evade human intrinsic immunity but lack efficient transmission capacity. Nature Microbiology 2024, 9: 2038-2050. PMID: 39075235, DOI: 10.1038/s41564-024-01765-z.Peer-Reviewed Original ResearchBat coronavirusesRelatives of SARS-CoV-2Upper airwayUpper airways of miceEpithelial cellsHuman nasal epithelial cellsAirways of miceMajor histocompatibility complex class I.SARS-CoV-2Nasal epithelial cellsHistocompatibility complex class I.Human bronchial epithelial cellsGenetic similarityBronchial epithelial cellsInnate immune restrictionCoronavirus replicationFunctional characterizationMolecular cloningReduced pathogenesisImpaired replicationBat virusCoronavirus pathogenesisPandemic potentialHigh-risk familiesImmune restriction
2023
Differences in syncytia formation by SARS-CoV-2 variants modify host chromatin accessibility and cellular senescence via TP53
Lee J, Menasche B, Mavrikaki M, Uyemura M, Hong S, Kozlova N, Wei J, Alfajaro M, Filler R, Müller A, Saxena T, Posey R, Cheung P, Muranen T, Heng Y, Paulo J, Wilen C, Slack F. Differences in syncytia formation by SARS-CoV-2 variants modify host chromatin accessibility and cellular senescence via TP53. Cell Reports 2023, 42: 113478. PMID: 37991919, PMCID: PMC10785701, DOI: 10.1016/j.celrep.2023.113478.Peer-Reviewed Original ResearchConceptsChromatin accessibilityProteomic compositionCellular senescenceTP53 stabilizationSARS-CoV-2 spikeCell-cell fusionPathogenic coronavirusesSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variantsSenescence-associated inflammationSARS-CoV-2 infectionMiddle East respiratory syndromeAccessibility stateInflammatory cytokine releaseSevere respiratory infectionsSARS-CoV-2 variantsSignificant public health threatCoronavirus disease 2019SARS-CoV-2Public health threatBreakthrough infectionsRespiratory infectionsCytokine releaseSenescenceDisease 2019Respiratory syndromePLSCR1 is a cell-autonomous defence factor against SARS-CoV-2 infection
Xu D, Jiang W, Wu L, Gaudet R, Park E, Su M, Cheppali S, Cheemarla N, Kumar P, Uchil P, Grover J, Foxman E, Brown C, Stansfeld P, Bewersdorf J, Mothes W, Karatekin E, Wilen C, MacMicking J. PLSCR1 is a cell-autonomous defence factor against SARS-CoV-2 infection. Nature 2023, 619: 819-827. PMID: 37438530, PMCID: PMC10371867, DOI: 10.1038/s41586-023-06322-y.Peer-Reviewed Original ResearchConceptsC-terminal β-barrel domainSpike-mediated fusionCell-autonomous defenseLarge-scale exome sequencingΒ-barrel domainGenome-wide CRISPRSARS-CoV-2 infectionHost cell cytosolScramblase activityPhospholipid scramblaseLive SARS-CoV-2 infectionHuman lung epitheliumPLSCR1SARS-CoV-2 USASingle-molecule switchingSARS-CoV-2 variantsExome sequencingHuman populationRestriction factorsViral RNANew SARS-CoV-2 variantsSARS-CoV-2Robust activityLung epitheliumDefense factorsThe KDM6A-KMT2D-p300 axis regulates susceptibility to diverse coronaviruses by mediating viral receptor expression
Wei J, Alfajaro M, Cai W, Graziano V, Strine M, Filler R, Biering S, Sarnik S, Patel S, Menasche B, Compton S, Konermann S, Hsu P, Orchard R, Yan Q, Wilen C. The KDM6A-KMT2D-p300 axis regulates susceptibility to diverse coronaviruses by mediating viral receptor expression. PLOS Pathogens 2023, 19: e1011351. PMID: 37410700, PMCID: PMC10325096, DOI: 10.1371/journal.ppat.1011351.Peer-Reviewed Original ResearchConceptsMouse hepatitis virusReceptor expressionTherapeutic targetMERS-CoVMajor SARS-CoV-2 variantsPrimary human airwaySARS-CoV-2 variantsNovel therapeutic targetViral receptor expressionSARS-CoV-2Histone methyltransferase KMT2DIntestinal epithelial cellsCoronavirus SusceptibilityDiverse coronavirusesHistone demethylase KDM6ADPP4 expressionCoronavirus receptorsHost determinantsHepatitis virusHuman airwaysSARS-CoVSmall molecule inhibitionViral entryPotential drug targetsViral receptors
2022
Plasmodium infection is associated with cross-reactive antibodies to carbohydrate epitopes on the SARS-CoV-2 Spike protein
Lapidus S, Liu F, Casanovas-Massana A, Dai Y, Huck J, Lucas C, Klein J, Filler R, Strine M, Sy M, Deme A, Badiane A, Dieye B, Ndiaye I, Diedhiou Y, Mbaye A, Diagne C, Vigan-Womas I, Mbengue A, Sadio B, Diagne M, Moore A, Mangou K, Diallo F, Sene S, Pouye M, Faye R, Diouf B, Nery N, Costa F, Reis M, Muenker M, Hodson D, Mbarga Y, Katz B, Andrews J, Campbell M, Srivathsan A, Kamath K, Baum-Jones E, Faye O, Sall A, Vélez J, Cappello M, Wilson M, Ben-Mamoun C, Tedder R, McClure M, Cherepanov P, Somé F, Dabiré R, Moukoko C, Ouédraogo J, Boum Y, Shon J, Ndiaye D, Wisnewski A, Parikh S, Iwasaki A, Wilen C, Ko A, Ring A, Bei A. Plasmodium infection is associated with cross-reactive antibodies to carbohydrate epitopes on the SARS-CoV-2 Spike protein. Scientific Reports 2022, 12: 22175. PMID: 36550362, PMCID: PMC9778468, DOI: 10.1038/s41598-022-26709-7.Peer-Reviewed Original ResearchConceptsCross-reactive antibodiesSARS-CoV-2Positive SARS-CoV-2 antibody resultsPositive SARS-CoV-2 antibodiesSARS-CoV-2 reactivitySARS-CoV-2 antibodiesAcute malaria infectionSpike proteinAntibody test resultsPre-pandemic samplesMalaria-endemic countriesPopulation-level immunityMalaria-endemic regionsSpike S1 subunitNon-endemic countriesSARS-CoV-2 spike proteinSARS-CoV-2 proteinsPopulation-level exposureCOVID-19 transmissionMalaria exposureFalse-positive resultsMalaria infectionDisease burdenPlasmodium infectionAntibody resultsLRRC15 inhibits SARS-CoV-2 cellular entry in trans
Song J, Chow RD, Peña-Hernández MA, Zhang L, Loeb SA, So EY, Liang OD, Ren P, Chen S, Wilen CB, Lee S. LRRC15 inhibits SARS-CoV-2 cellular entry in trans. PLOS Biology 2022, 20: e3001805. PMID: 36228039, PMCID: PMC9595563, DOI: 10.1371/journal.pbio.3001805.Peer-Reviewed Original ResearchConceptsExpression of LRRC15Receptor-binding domainViral entryAcute respiratory syndrome coronavirus 2 infectionSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectionSARS-CoV-2 cellular entrySyndrome coronavirus 2 infectionSARS-CoV-2 entrySpike-mediated entryCoronavirus 2 infectionCOVID-19 patientsCellular entry factorsSARS-CoV-2Attachment factorsACE2-negative cellsEnzyme 2Receptor angiotensinEntry factorsProtective roleLRRC15Spike proteinSame cell typeCRISPR activation screensACE2Cellular entryCoronavirus Lung Infection Impairs Host Immunity against Secondary Bacterial Infection by Promoting Lysosomal Dysfunction.
Peng X, Kim J, Gupta G, Agaronyan K, Mankowski MC, Korde A, Takyar SS, Shin HJ, Habet V, Voth S, Audia JP, Chang D, Liu X, Wang L, Cai Y, Tian X, Ishibe S, Kang MJ, Compton S, Wilen CB, Dela Cruz CS, Sharma L. Coronavirus Lung Infection Impairs Host Immunity against Secondary Bacterial Infection by Promoting Lysosomal Dysfunction. The Journal Of Immunology 2022, 209: 1314-1322. PMID: 36165196, PMCID: PMC9523490, DOI: 10.4049/jimmunol.2200198.Peer-Reviewed Original ResearchConceptsSARS-CoV-2Bacterial infectionsMouse modelCoronavirus infectionLysosomal dysfunctionMajor health care challengeLung immune cellsLung tissue damageSecondary bacterial infectionImpair host immunityIL-1β releaseHealth care challengesCell deathPyroptotic cell deathBacterial killing abilityIL-1βBacterial clearanceImmune cellsSecondary infectionHost immunityAlveolar macrophagesTissue damageΒ-coronavirusStructural cellsCare challengesMultiplexed LNP-mRNA vaccination against pathogenic coronavirus species
Peng L, Fang Z, Renauer PA, McNamara A, Park JJ, Lin Q, Zhou X, Dong MB, Zhu B, Zhao H, Wilen CB, Chen S. Multiplexed LNP-mRNA vaccination against pathogenic coronavirus species. Cell Reports 2022, 40: 111160. PMID: 35921835, PMCID: PMC9294034, DOI: 10.1016/j.celrep.2022.111160.Peer-Reviewed Original ResearchConceptsAntibody responseCoronavirus speciesSequential vaccinationSARS-CoVAntigen-specific antibody responsesSARS-CoV-2 DeltaAdaptive immune cellsEffective immune responsePotent antibody responsesCOVID-19 vaccineSARS-CoV-2MRNA vaccine candidatesActivated B cellsSingle-cell RNA sequencing profilesRNA sequencing profilesSimultaneous vaccinationAntibody immunityVaccination scheduleImmune profileImmune cellsImmune responseVaccine candidatesMERS-CoV.Animal modelsB cellsOmicron-specific mRNA vaccination alone and as a heterologous booster against SARS-CoV-2
Fang Z, Peng L, Filler R, Suzuki K, McNamara A, Lin Q, Renauer PA, Yang L, Menasche B, Sanchez A, Ren P, Xiong Q, Strine M, Clark P, Lin C, Ko AI, Grubaugh ND, Wilen CB, Chen S. Omicron-specific mRNA vaccination alone and as a heterologous booster against SARS-CoV-2. Nature Communications 2022, 13: 3250. PMID: 35668119, PMCID: PMC9169595, DOI: 10.1038/s41467-022-30878-4.Peer-Reviewed Original ResearchConceptsHeterologous boosterSARS-CoV-2Antibody responseMRNA vaccinesMRNA vaccinationDelta variantOmicron variantType of vaccinationStrong antibody responseMRNA vaccine candidatesVaccine candidatesNeutralization potencyImmune evasionSARS-CoV.Two weeksComparable titersVaccinationVaccineTiters 10MiceOmicronWeeksWA-1LNP-mRNABoosterInflammasome activation in infected macrophages drives COVID-19 pathology
Sefik E, Qu R, Junqueira C, Kaffe E, Mirza H, Zhao J, Brewer JR, Han A, Steach HR, Israelow B, Blackburn HN, Velazquez SE, Chen YG, Halene S, Iwasaki A, Meffre E, Nussenzweig M, Lieberman J, Wilen CB, Kluger Y, Flavell RA. Inflammasome activation in infected macrophages drives COVID-19 pathology. Nature 2022, 606: 585-593. PMID: 35483404, PMCID: PMC9288243, DOI: 10.1038/s41586-022-04802-1.Peer-Reviewed Original ResearchConceptsInflammasome activationLung inflammationInflammatory responseInfected macrophagesSARS-CoV-2 infectionHuman macrophagesChronic lung pathologyPersistent lung inflammationSevere COVID-19Immune inflammatory responseInflammatory cytokine productionHumanized mouse modelNLRP3 inflammasome pathwayCOVID-19 pathologyCOVID-19SARS-CoV-2Productive viral cycleHyperinflammatory stateChronic stageIL-18Cytokine productionInflammatory cytokinesLung pathologyInflammasome pathwayInterleukin-1Variant-specific vaccination induces systems immune responses and potent in vivo protection against SARS-CoV-2
Peng L, Renauer PA, Ökten A, Fang Z, Park JJ, Zhou X, Lin Q, Dong MB, Filler R, Xiong Q, Clark P, Lin C, Wilen CB, Chen S. Variant-specific vaccination induces systems immune responses and potent in vivo protection against SARS-CoV-2. Cell Reports Medicine 2022, 3: 100634. PMID: 35561673, PMCID: PMC9040489, DOI: 10.1016/j.xcrm.2022.100634.Peer-Reviewed Original ResearchConceptsImmune responseImmune cell populationsSARS-CoV-2 spikeAssessment of efficacySARS-CoV-2LNP-mRNABreakthrough infectionsCD8 TImmune profilingMRNA vaccinesPotent protectionT lymphocytesNeutralization activityDelta variantAnimal modelsPotent antibodiesRepertoire diversityCell responsesAuthentic virusSystemic increaseVariant lineagesClonal expansionCell populationsCOVID-19VaccinationMonospecific and bispecific monoclonal SARS-CoV-2 neutralizing antibodies that maintain potency against B.1.617
Peng L, Hu Y, Mankowski MC, Ren P, Chen RE, Wei J, Zhao M, Li T, Tripler T, Ye L, Chow RD, Fang Z, Wu C, Dong MB, Cook M, Wang G, Clark P, Nelson B, Klein D, Sutton R, Diamond MS, Wilen CB, Xiong Y, Chen S. Monospecific and bispecific monoclonal SARS-CoV-2 neutralizing antibodies that maintain potency against B.1.617. Nature Communications 2022, 13: 1638. PMID: 35347138, PMCID: PMC8960874, DOI: 10.1038/s41467-022-29288-3.Peer-Reviewed Original ResearchConceptsSARS-CoV-2Authentic SARS-CoV-2Effective therapeutic optionPotent SARS-CoV-2SARS-CoV-2 variantsVariants of concernRepertoire of therapeuticsBreakthrough infectionsTherapeutic optionsMultiple vaccinesPathogen SARS-CoV-2Delta variantB cellsPotent efficacyHumanized antibodyDistinct epitopesBispecific antibodiesOriginal virusSpike receptorStrong inhibitory activityMonoclonal antibodiesAntibodiesStrong potencyLead clonesLead antibodiesHigh-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells
Chen JS, Chow RD, Song E, Mao T, Israelow B, Kamath K, Bozekowski J, Haynes WA, Filler RB, Menasche BL, Wei J, Alfajaro MM, Song W, Peng L, Carter L, Weinstein JS, Gowthaman U, Chen S, Craft J, Shon JC, Iwasaki A, Wilen CB, Eisenbarth SC. High-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells. Science Immunology 2022, 7: eabl5652. PMID: 34914544, PMCID: PMC8977051, DOI: 10.1126/sciimmunol.abl5652.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionSARS-CoV-2Follicular helper cellsB cell responsesHelper cellsAntibody productionCell responsesSARS-CoV-2 vaccinationB-cell receptor sequencingSevere COVID-19Cell receptor sequencingIndependent antibodiesT cell-B cell interactionsViral inflammationAntiviral antibodiesImmunoglobulin class switchingVirus infectionGerminal centersViral infectionClonal repertoireInfectionAntibodiesClass switchingCOVID-19Patients
2021
A stem-loop RNA RIG-I agonist protects against acute and chronic SARS-CoV-2 infection in mice
Mao T, Israelow B, Lucas C, Vogels CBF, Gomez-Calvo ML, Fedorova O, Breban MI, Menasche BL, Dong H, Linehan M, Alpert T, Anderson F, Earnest R, Fauver J, Kalinich C, Munyenyembe K, Ott I, Petrone M, Rothman J, Watkins A, Wilen C, Landry M, Grubaugh N, Pyle A, Iwasaki A. A stem-loop RNA RIG-I agonist protects against acute and chronic SARS-CoV-2 infection in mice. Journal Of Experimental Medicine 2021, 219: e20211818. PMID: 34757384, PMCID: PMC8590200, DOI: 10.1084/jem.20211818.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionChronic SARS-CoV-2 infectionVariants of concernLethal SARS-CoV-2 infectionPost-infection therapyLower respiratory tractPost-exposure treatmentType I interferonSARS-CoV-2Effective medical countermeasuresAdaptive immune systemBroad-spectrum antiviralsContext of infectionSingle doseRespiratory tractViral controlImmunodeficient miceSevere diseaseMouse modelI interferonViral infectionImmune systemInnate immunityDisease preventionConsiderable efficacyLive imaging of SARS-CoV-2 infection in mice reveals that neutralizing antibodies require Fc function for optimal efficacy
Ullah I, Prévost J, Ladinsky MS, Stone H, Lu M, Anand SP, Beaudoin-Bussières G, Symmes K, Benlarbi M, Ding S, Gasser R, Fink C, Chen Y, Tauzin A, Goyette G, Bourassa C, Medjahed H, Mack M, Chung K, Wilen CB, Dekaban GA, Dikeakos JD, Bruce EA, Kaufmann DE, Stamatatos L, McGuire AT, Richard J, Pazgier M, Bjorkman PJ, Mothes W, Finzi A, Kumar P, Uchil PD. Live imaging of SARS-CoV-2 infection in mice reveals that neutralizing antibodies require Fc function for optimal efficacy. Immunity 2021, 54: 2143-2158.e15. PMID: 34453881, PMCID: PMC8372518, DOI: 10.1016/j.immuni.2021.08.015.Peer-Reviewed Original ResearchConceptsCOVID-19 convalescent subjectsSARS-CoV-2 infectionBioluminescence imagingK18-hACE2 miceLive bioluminescence imagingNatural killer cellsFc effector functionsSARS-CoV-2Convalescent subjectsKiller cellsPotent NAbsImmune protectionInflammatory responseEffector functionsNasal cavityNaB treatmentOptimal efficacyFc functionDepletion studiesMiceNAbsCOVID-19Direct neutralizationInfectionAntibodiesRestriction of SARS-CoV-2 replication by targeting programmed −1 ribosomal frameshifting
Sun Y, Abriola L, Niederer RO, Pedersen SF, Alfajaro MM, Silva Monteiro V, Wilen CB, Ho YC, Gilbert WV, Surovtseva YV, Lindenbach BD, Guo JU. Restriction of SARS-CoV-2 replication by targeting programmed −1 ribosomal frameshifting. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2023051118. PMID: 34185680, PMCID: PMC8256030, DOI: 10.1073/pnas.2023051118.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 replicationSARS-CoV-2Severe acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2Respiratory syndrome coronavirus 2Syndrome coronavirus 2Vero E6 cellsHigh-throughput compound screenOpen reading frame 1bEffective antiviral strategiesCoronavirus 2E6 cellsAntiviral strategiesViral gene expressionCompound screenFluoroquinolone antibacterialsFrame 1bGene expressionTranslational shutdown and evasion of the innate immune response by SARS-CoV-2 NSP14 protein
Hsu JC, Laurent-Rolle M, Pawlak JB, Wilen CB, Cresswell P. Translational shutdown and evasion of the innate immune response by SARS-CoV-2 NSP14 protein. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2101161118. PMID: 34045361, PMCID: PMC8214666, DOI: 10.1073/pnas.2101161118.Peer-Reviewed Original ResearchConceptsSARS-CoV-2Interferon-stimulated genesImmune responseSevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2Host protein synthesisRespiratory syndrome coronavirus 2Syndrome coronavirus 2Innate immune responseUnprecedented global health crisisCoronavirus 2N7-methyltransferase activityOngoing COVID-19 pandemicHuman coronavirusesTranslational shutdownVirus replicationNsp14 proteinGlobal health crisisProtein synthesisInhibition activityCausative agentCOVID-19COVID-19 pandemicSARS-CoV-2 nsp14Dependent inductionSingle-cell longitudinal analysis of SARS-CoV-2 infection in human airway epithelium identifies target cells, alterations in gene expression, and cell state changes
Ravindra NG, Alfajaro MM, Gasque V, Huston NC, Wan H, Szigeti-Buck K, Yasumoto Y, Greaney AM, Habet V, Chow RD, Chen JS, Wei J, Filler RB, Wang B, Wang G, Niklason LE, Montgomery RR, Eisenbarth SC, Chen S, Williams A, Iwasaki A, Horvath TL, Foxman EF, Pierce RW, Pyle AM, van Dijk D, Wilen CB. Single-cell longitudinal analysis of SARS-CoV-2 infection in human airway epithelium identifies target cells, alterations in gene expression, and cell state changes. PLOS Biology 2021, 19: e3001143. PMID: 33730024, PMCID: PMC8007021, DOI: 10.1371/journal.pbio.3001143.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionSARS-CoV-2Human bronchial epithelial cellsInterferon-stimulated genesCell state changesAcute respiratory syndrome coronavirus 2 infectionSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectionSyndrome coronavirus 2 infectionCell tropismCoronavirus 2 infectionCoronavirus disease 2019Onset of infectionCell-intrinsic expressionCourse of infectionAir-liquid interface culturesHost-viral interactionsBronchial epithelial cellsSingle-cell RNA sequencingCell typesIL-1Disease 2019Human airwaysDevelopment of therapeuticsDrug AdministrationViral replicationDiscovery and functional interrogation of SARS-CoV-2 RNA-host protein interactions
Flynn RA, Belk JA, Qi Y, Yasumoto Y, Wei J, Alfajaro MM, Shi Q, Mumbach MR, Limaye A, DeWeirdt PC, Schmitz CO, Parker KR, Woo E, Chang HY, Horvath TL, Carette JE, Bertozzi CR, Wilen CB, Satpathy AT. Discovery and functional interrogation of SARS-CoV-2 RNA-host protein interactions. Cell 2021, 184: 2394-2411.e16. PMID: 33743211, PMCID: PMC7951565, DOI: 10.1016/j.cell.2021.03.012.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 RNASARS-CoV-2Virus-induced cell deathHost protein interactionsRNA-binding proteinActive infectionRNA virusesHost-virus interfaceGlobal mortalityTherapeutic benefitCRISPR screensAntiviral factorsProtein interactionsAntiviral activityViral specificityHost pathwaysFunctional RNA-binding proteinsFunctional connectionsRNA-centric approachesCell deathHost proteinsVirusFunctional interrogationRNAComprehensive catalogNonsteroidal Anti-inflammatory Drugs Dampen the Cytokine and Antibody Response to SARS-CoV-2 Infection
Chen JS, Alfajaro MM, Chow RD, Wei J, Filler RB, Eisenbarth SC, Wilen CB. Nonsteroidal Anti-inflammatory Drugs Dampen the Cytokine and Antibody Response to SARS-CoV-2 Infection. Journal Of Virology 2021, 95: 10.1128/jvi.00014-21. PMID: 33441348, PMCID: PMC8092681, DOI: 10.1128/jvi.00014-21.Peer-Reviewed Original ResearchSARS-CoV-2 infectionNonsteroidal anti-inflammatory drugsCOVID-19 pathogenesisSARS-CoV-2Anti-inflammatory drugsProduction of prostaglandinsCyclooxygenase-2Immune responseNSAID treatmentCyclooxygenase-1Enzymes cyclooxygenase-1Inflammatory responseAbility of NSAIDsAcute respiratory syndrome coronavirus 2 infectionSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectionSyndrome coronavirus 2 infectionSARS-CoV-2 vaccinationViral replicationPro-inflammatory cytokine responseCoronavirus 2 infectionExpression of angiotensinRelief of painPro-inflammatory cytokinesCoronavirus disease 2019 (COVID-19) pandemicHumoral immune response