2015
Accurate Line Shapes from Sub‑1 cm–1 Resolution Sum Frequency Generation Vibrational Spectroscopy of α‑Pinene at Room Temperature
Mifflin A, Velarde L, Ho J, Psciuk B, Negre C, Ebben C, Upshur M, Lu Z, Strick B, Thomson R, Batista V, Wang H, Geiger F. Accurate Line Shapes from Sub‑1 cm–1 Resolution Sum Frequency Generation Vibrational Spectroscopy of α‑Pinene at Room Temperature. The Journal Of Physical Chemistry A 2015, 119: 1292-1302. PMID: 25647092, DOI: 10.1021/jp510700z.Peer-Reviewed Original ResearchConceptsVibrational spectroscopySum frequency generation vibrational spectroscopyGeneration vibrational spectroscopySum frequency generation spectraMolecular dynamics calculationsΑ-pineneVibrational energy relaxationSFG spectroscopyRoom temperaturePhase-resolved spectraAccurate line shapesVibrational spectraFourier transformMolecular surfaceHigh spectral resolutionSpectroscopyRaman spectraDynamics calculationsSame moleculeCommon terpenesNew spectroscopyVibrational coherenceEnergy relaxationGeneration spectraSpectral lines
2011
Kepler Predictor–Corrector Algorithm: Scattering Dynamics with One-Over-R Singular Potentials
Markmann A, Graziani F, Batista V. Kepler Predictor–Corrector Algorithm: Scattering Dynamics with One-Over-R Singular Potentials. Journal Of Chemical Theory And Computation 2011, 8: 24-35. PMID: 26592868, DOI: 10.1021/ct200452h.Peer-Reviewed Original ResearchFull quantum dynamics calculationsQuantum dynamics calculationsInterstellar gas dynamicsTwo-body collisionsSemiclassical dynamics simulationTime-reversal symmetricTime-dependent pictureScattering dynamicsClassical simulationsScattering processR potentialClose encountersDynamics simulationsDynamics calculationsExcellent agreementCelestial mechanicsGas dynamicsKepler problemStandard numerical techniquesSingular potentialsParticlesPseudopotentialsCollisionsDynamicsSimulations
2002
Real time path integrals using the Herman–Kluk propagator
Burant J, Batista V. Real time path integrals using the Herman–Kluk propagator. The Journal Of Chemical Physics 2002, 116: 2748-2756. DOI: 10.1063/1.1436306.Peer-Reviewed Original ResearchFull quantum mechanical resultsOne-dimensional potential energy surfaceReal-time path integralsSemiclassical initial value representationHerman-Kluk propagatorQuantum dynamics calculationsTime evolution operatorInverse overlap matrixQuantum mechanical resultsInitial value representationCoherent state representationLong-time dynamicsPotential energy surfaceTwo-dimensional systemsHerman-Kluk semiclassical initial value representationEvolution operatorNonadiabatic dynamicsTime propagatorPath integralEnergy surfaceOverlap matrixQuantitative agreementDynamics calculationsApproximate calculationBasis set