2023
Redox leveling of the Kok cycle of photosystem II established by water ligand binding to the oxygen evolving complex
Liu J, Yang K, Brudvig G, Batista V. Redox leveling of the Kok cycle of photosystem II established by water ligand binding to the oxygen evolving complex. Biophysical Journal 2023, 122: 199a-200a. DOI: 10.1016/j.bpj.2022.11.1210.Peer-Reviewed Original Research
2022
PM-IRRAS and DFT investigation of the surface orientation of new Ir piano-stool complexes attached to Au(111)
Miller C, Brunner F, Kelly H, Cheung P, Torquato N, Gembicky M, Okuno S, Chan T, Batista V, Kubiak C. PM-IRRAS and DFT investigation of the surface orientation of new Ir piano-stool complexes attached to Au(111). Dalton Transactions 2022, 51: 17688-17699. PMID: 36345597, DOI: 10.1039/d2dt02730e.Peer-Reviewed Original ResearchPiano-stool complexesPhenylpyridine ligandsPM-IRRASPolarization modulation infrared reflection absorption spectroscopyInfrared reflection absorption spectroscopySelf-assembled monolayersNew catalytic systemReflection absorption spectroscopyMinimum energy orientationMolecular catalystsOrganometallic catalystsCatalytic systemDFT calculationsSurface immobilizationDFT investigationAbsorption spectroscopyCatalystSurface mechanismBipyridineLigandsHeterogenous surfaceComplexesEnergy orientationSuch hybrid systemsSurface orientationStructural Insights into Binding of Remdesivir Triphosphate within the Replication–Transcription Complex of SARS-CoV‑2
Wang J, Shi Y, Reiss K, Maschietto F, Lolis E, Konigsberg WH, Lisi GP, Batista VS. Structural Insights into Binding of Remdesivir Triphosphate within the Replication–Transcription Complex of SARS-CoV‑2. Biochemistry 2022, 61: 1966-1973. PMID: 36044776, PMCID: PMC9469760, DOI: 10.1021/acs.biochem.2c00341.Peer-Reviewed Original ResearchConceptsReplication-transcription complexStructural basisCryo-EM structureAdenosine monophosphateRemdesivir triphosphateStructural insightsDuplex productsPrimer extensionNucleotide selectivityBase pairsNucleotide incorporationIncoming substrateRibosyl moietyActive complexSARS-CoV-2 inhibitorsNew detailed informationTriphosphateComplexesMolecular dynamics simulationsAdenosine triphosphateReply To: Confined molecular catalysts provide an alternative interpretation to the electrochemically reversible demetallation of copper complexes
Weng Z, Wu Y, Wang M, Brudvig GW, Batista VS, Liang Y, Feng Z, Wang H. Reply To: Confined molecular catalysts provide an alternative interpretation to the electrochemically reversible demetallation of copper complexes. Nature Communications 2022, 13: 4191. PMID: 35869050, PMCID: PMC9307650, DOI: 10.1038/s41467-022-31662-0.Peer-Reviewed Original ResearchBinding of the substrate analog methanol in the oxygen-evolving complex of photosystem II in the D1-N87A genetic variant of cyanobacteria
Kalendra V, Reiss KM, Banerjee G, Ghosh I, Baldansuren A, Batista VS, Brudvig GW, Lakshmi KV. Binding of the substrate analog methanol in the oxygen-evolving complex of photosystem II in the D1-N87A genetic variant of cyanobacteria. Faraday Discussions 2022, 234: 195-213. PMID: 35147155, DOI: 10.1039/d1fd00094b.Peer-Reviewed Original ResearchConceptsOxygen-evolving complexDensity functional theorySolar water-splitting protein complexTwo-dimensional hyperfine sublevel correlation spectroscopyPhotosystem IIQuantum mechanics/molecular mechanicsHyperfine sublevel correlation spectroscopyWater oxidation reactionWater oxidationCatalytic clustersOxidation reactionSubstrate waterMolecular mechanicsCorrelation spectroscopyFunctional theorySubstrate analoguesLight energyMethanolComplexesReactionIntermediatesDetailed mechanismCatalystSpectroscopyWaterGlycerol binding at the narrow channel of photosystem II stabilizes the low-spin S2 state of the oxygen-evolving complex
Flesher DA, Liu J, Wiwczar JM, Reiss K, Yang KR, Wang J, Askerka M, Gisriel CJ, Batista VS, Brudvig GW. Glycerol binding at the narrow channel of photosystem II stabilizes the low-spin S2 state of the oxygen-evolving complex. Photosynthesis Research 2022, 152: 167-175. PMID: 35322325, PMCID: PMC9427693, DOI: 10.1007/s11120-022-00911-0.Peer-Reviewed Original ResearchConceptsOxygen-evolving complexHydrogen bond networkS2 stateEPR signalPhotosystem II cyclesX-ray crystal structureRelative stabilityState EPR signalsD1-Asp61Water oxidationCatalytic intermediatesPhotochemical oxidationEPR spectraGlycerol moleculesCrystal structureCyanobacterial PSIIMultiline signalState SiPhotosystem IIOxidationRelative intensitiesComplexesEffect of glycerolExperimental conditionsStability
2021
Heterogeneous Composition of Oxygen-Evolving Complexes in Crystal Structures of Dark-Adapted Photosystem II
Wang J, Gisriel CJ, Reiss K, Huang HL, Armstrong WH, Brudvig GW, Batista VS. Heterogeneous Composition of Oxygen-Evolving Complexes in Crystal Structures of Dark-Adapted Photosystem II. Biochemistry 2021, 60: 3374-3384. PMID: 34714055, DOI: 10.1021/acs.biochem.1c00611.Peer-Reviewed Original ResearchConceptsOxygen-evolving complexMetal ionsPhotosystem IIElectron density peakIndividual metal ionsElectron density distributionNumber of electronsPSII dimersMetal centerWater oxidationOxidation stateElectron numberHomodimeric protein complexElectronsCrystal structurePSII structureDensity distributionDensity peaksComplexesRedox stateIonsDimersMonomersPeakOxidationProton exit pathways surrounding the oxygen evolving complex of photosystem II
Kaur D, Zhang Y, Reiss KM, Mandal M, Brudvig GW, Batista VS, Gunner MR. Proton exit pathways surrounding the oxygen evolving complex of photosystem II. Biochimica Et Biophysica Acta (BBA) - Bioenergetics 2021, 1862: 148446. PMID: 33964279, DOI: 10.1016/j.bbabio.2021.148446.Peer-Reviewed Original ResearchConceptsOxygen-Evolving ComplexMulti-Conformation Continuum ElectrostaticsWater-filled channelsMolecular dynamicsSubstrate water moleculesHydrogen bond network analysisProton exit pathwayPhotosynthetic electron transfer chainProton transfer pathPhotosystem IISimilar free energiesInorganic coreWater chainWater moleculesAqueous surfaceElectron transfer chainContinuum electrostaticsProduct oxygenFree energyTransfer chainLarge channelsLikely exitTransfer pathLumenal sideComplexes
2020
Identification of a Na+‑Binding Site near the Oxygen-Evolving Complex of Spinach Photosystem II
Wang J, Perez-Cruet JM, Huang HL, Reiss K, Gisriel CJ, Banerjee G, Kaur D, Ghosh I, Dziarski A, Gunner MR, Batista VS, Brudvig GW. Identification of a Na+‑Binding Site near the Oxygen-Evolving Complex of Spinach Photosystem II. Biochemistry 2020, 59: 2823-2831. PMID: 32650633, DOI: 10.1021/acs.biochem.0c00303.Peer-Reviewed Original ResearchConceptsOxygen-evolving complexSpinach photosystem IIRedox-active Mn ionPhotosystem IIOxygen evolution activityQuantum mechanical calculationsOxomanganese clusterHydroxide anionCommon counterionCryo-electron microscopy mapMechanical calculationsAmino acid residuesMn ionsIonsElectrostatic simulationsMicroscopy mapsAcid residuesComplexesDeprotonationAnionsCounterionsNaChlorideSitesCl
2019
Water Network Dynamics Next to the Oxygen-Evolving Complex of Photosystem II
Reiss K, Morzan U, Grigas A, Batista V. Water Network Dynamics Next to the Oxygen-Evolving Complex of Photosystem II. Inorganics 2019, 7: 39. DOI: 10.3390/inorganics7030039.Peer-Reviewed Original ResearchOxygen-evolving complexWater network dynamicsMolecular dynamics simulationsPhotosystem IICatalytic performanceHydrogen bondingProtein environmentLarge ionsS2 stateDynamics simulationsLarge channelsProton translocationWater diffusionComplexesPSII assemblyEigenvector centrality analysisWater networkGreat interestWater channelsDynamical natureBondingIonsWater transportMajor channelChloride
2018
Cover Feature: Behavior of Ru–bda Water‐Oxidation Catalysts in Low Oxidation States (Chem. Eur. J. 49/2018)
Matheu R, Ghaderian A, Francàs L, Chernev P, Ertem M, Benet‐Buchholz J, Batista V, Haumann M, Gimbert‐Suriñach C, Sala X, Llobet A. Cover Feature: Behavior of Ru–bda Water‐Oxidation Catalysts in Low Oxidation States (Chem. Eur. J. 49/2018). Chemistry - A European Journal 2018, 24: 12736-12736. DOI: 10.1002/chem.201803661.Peer-Reviewed Original ResearchWater-Nucleophilic Attack Mechanism for the CuII(pyalk)2 Water-Oxidation Catalyst
Rudshteyn B, Fisher K, Lant H, Yang K, Mercado B, Brudvig G, Crabtree R, Batista V. Water-Nucleophilic Attack Mechanism for the CuII(pyalk)2 Water-Oxidation Catalyst. ACS Catalysis 2018, 8: 7952-7960. DOI: 10.1021/acscatal.8b02466.Peer-Reviewed Original ResearchKinetic isotope effectsWater nucleophilic attack mechanismWater oxidation catalystsWater nucleophilic attackD Kinetic Isotope EffectO bond formationUV-visible spectraDensity functional theoryElectrochemical stepWater oxidationElectrochemical analysisTurnover frequencyDerivative complexesBond formationRadical speciesRational designCis formFunctional theoryIsotope effectRate-limiting stepCatalystComplexesAttack mechanismMechanistic findingsDeprotonation
2017
Thermodynamic and Structural Factors That Influence the Redox Potentials of Tungsten–Alkylidyne Complexes
Rudshteyn B, Vibbert H, May R, Wasserman E, Warnke I, Hopkins M, Batista V. Thermodynamic and Structural Factors That Influence the Redox Potentials of Tungsten–Alkylidyne Complexes. ACS Catalysis 2017, 7: 6134-6143. DOI: 10.1021/acscatal.7b01636.Peer-Reviewed Original ResearchTungsten alkylidyne complexesRedox propertiesOxidation potentialGas-phase ionization energiesKey frontier orbitalsDensity functional theory levelX bond lengthsFree energy calculationsSolvation free energy differencesAlkylidyne ligandFrontier orbitalsHOMO energyFree energy differenceBond lengthsObserved linear correlationRedox potentialTheory levelEnergy calculationsIonization energyEnergy differenceComplexesStructural factorsElectrochemistryGood descriptorLinear correlationElectrode-Ligand Interactions Dramatically Enhance CO2 Conversion to CO by the [Ni(cyclam)](PF6)2 Catalyst
Wu Y, Rudshteyn B, Zhanaidarova A, Froehlich J, Ding W, Kubiak C, Batista V. Electrode-Ligand Interactions Dramatically Enhance CO2 Conversion to CO by the [Ni(cyclam)](PF6)2 Catalyst. ACS Catalysis 2017, 7: 5282-5288. DOI: 10.1021/acscatal.7b01109.Peer-Reviewed Original ResearchCO2 conversionTransition metal complexesElectrochemical CO2 conversionDesign of ligandsEnhanced reaction kineticsCell operating conditionsCyclam ligandGold electrodeElectrocatalytic performanceHg surfaceDispersive interactionsReaction kineticsMetallic surfacesCatalystDramatic enhancementLigandsCOConversionSurfaceElectrodeComplexesInteractionKineticsOperating conditionsAntimony Complexes for Electrocatalysis: Activity of a Main‐Group Element in Proton Reduction
Jiang J, Materna K, Hedström S, Yang K, Crabtree R, Batista V, Brudvig G. Antimony Complexes for Electrocatalysis: Activity of a Main‐Group Element in Proton Reduction. Angewandte Chemie 2017, 129: 9239-9243. DOI: 10.1002/ange.201704700.Peer-Reviewed Original ResearchMain group catalysisRedox-active ligandsMain group complexesQuantum chemistry calculationsMain group elementsViable electrocatalystsPorphyrin ligandChemistry calculationsHydroxy ligandsElectrocatalysis applicationsProton reductionCatalytic propertiesAntimony complexesRedox activityAxial ligandsCatalytic cycleSb centerLigandsCatalysisComplexesElectrocatalysisElectrocatalystsPorphyrinsReactionAcid
2015
Mechanism of Manganese-Catalyzed Oxygen Evolution from Experimental and Theoretical Analyses of 18O Kinetic Isotope Effects
Khan S, Yang K, Ertem M, Batista V, Brudvig G. Mechanism of Manganese-Catalyzed Oxygen Evolution from Experimental and Theoretical Analyses of 18O Kinetic Isotope Effects. ACS Catalysis 2015, 5: 7104-7113. DOI: 10.1021/acscatal.5b01976.Peer-Reviewed Original ResearchBiomimetic oxomanganese complexesO2 evolutionOxomanganese complexesElusive reaction intermediatesKinetic oxygen isotope effectO2-evolving complexPhotosystem IIFirst bindsTurnover conditionsPrevious kinetic studiesComplexesOxygen evolutionComplete mechanismEvolutionMechanismSpeciesBindsStrong evidenceIntermediatesTurnoverHighest barrier stepKinetic isotope effectsUltrafast IR Spectroscopy of O-H Stretching Modes in 2-Naphthol-Acetonitrile Photoacid-Base Complexes
Psciuk B, Prémont-Schwartz M, Koeppe B, Keinan S, Xiao D, Batista V, Nibbering E. Ultrafast IR Spectroscopy of O-H Stretching Modes in 2-Naphthol-Acetonitrile Photoacid-Base Complexes. Springer Proceedings In Physics 2015, 162: 483-486. DOI: 10.1007/978-3-319-13242-6_118.Peer-Reviewed Original ResearchComputational Insights on Crystal Structures of the Oxygen-Evolving Complex of Photosystem II with Either Ca2+ or Ca2+ Substituted by Sr2+
Vogt L, Ertem MZ, Pal R, Brudvig GW, Batista VS. Computational Insights on Crystal Structures of the Oxygen-Evolving Complex of Photosystem II with Either Ca2+ or Ca2+ Substituted by Sr2+. Biochemistry 2015, 54: 820-825. PMID: 25555204, DOI: 10.1021/bi5011706.Peer-Reviewed Original ResearchConceptsX-ray crystal structureCrystal structureQuantum mechanics/molecular mechanics calculationsQM/MM modelOxygen-Evolving ComplexMolecular mechanics calculationsPhotosystem IIWater oxidationMechanics calculationsComputational insightsReduced statesHeterocationsMM modelSubstitution resultsComplexesS statesStructureCationsBondsOxidationSr2Experimental dataW5WaterCalculations
2013
A Self‐Improved Water‐Oxidation Catalyst: Is One Site Really Enough?
López I, Ertem M, Maji S, Benet‐Buchholz J, Keidel A, Kuhlmann U, Hildebrandt P, Cramer C, Batista V, Llobet A. A Self‐Improved Water‐Oxidation Catalyst: Is One Site Really Enough? Angewandte Chemie International Edition 2013, 53: 205-209. PMID: 24259487, DOI: 10.1002/anie.201307509.Peer-Reviewed Original ResearchWater oxidation catalystsRobust water oxidation catalystsTransition metal complexesLarge turnover frequencyDFT computational analysisInterconnected catalytic cyclesMononuclear catalystsHomogeneous catalysisWater oxidationRobust catalystsTurnover frequencyEnergy conversion schemeCatalytic processCatalytic cycleMononuclear systemsCatalystDinuclear systemCatalysisComputational analysisOxidationSpectacular developmentHereinComplexesA Self‐Improved Water‐Oxidation Catalyst: Is One Site Really Enough?
López I, Ertem M, Maji S, Benet‐Buchholz J, Keidel A, Kuhlmann U, Hildebrandt P, Cramer C, Batista V, Llobet A. A Self‐Improved Water‐Oxidation Catalyst: Is One Site Really Enough? Angewandte Chemie 2013, 126: 209-213. DOI: 10.1002/ange.201307509.Peer-Reviewed Original ResearchWater oxidation catalystsRobust water oxidation catalystsTransition metal complexesLarge turnover frequencyDFT computational analysisInterconnected catalytic cyclesMononuclear catalystsHomogeneous catalysisWater oxidationRobust catalystsTurnover frequencyEnergy conversion schemeCatalytic processCatalytic cycleMononuclear systemsCatalystDinuclear systemCatalysisComputational analysisOxidationSpectacular developmentHereinComplexes