2015
Polycystin-1 Is a Cardiomyocyte Mechanosensor That Governs L-Type Ca2+ Channel Protein Stability
Pedrozo Z, Criollo A, Battiprolu PK, Morales CR, Contreras-Ferrat A, Fernández C, Jiang N, Luo X, Caplan MJ, Somlo S, Rothermel BA, Gillette TG, Lavandero S, Hill JA. Polycystin-1 Is a Cardiomyocyte Mechanosensor That Governs L-Type Ca2+ Channel Protein Stability. Circulation 2015, 131: 2131-2142. PMID: 25888683, PMCID: PMC4470854, DOI: 10.1161/circulationaha.114.013537.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornBiomarkersCalcium Channels, L-TypeCardiomegalyCells, CulturedFibrosisHypertrophyHypotonic SolutionsMaleMechanotransduction, CellularMiceMice, KnockoutMyocytes, CardiacProtein Interaction MappingProtein StabilityProtein Structure, TertiaryRatsRats, Sprague-DawleyRecombinant Fusion ProteinsRNA InterferenceStress, MechanicalTRPP Cation ChannelsConceptsL-type calcium channel activityCalcium channel activityNeonatal rat ventricular myocytesRat ventricular myocytesKnockout miceVentricular myocytesChannel activityMechanical stretchNeonatal rat ventricular myocyte hypertrophyProtein levelsVentricular myocyte hypertrophyL-type Ca2G protein-coupled receptor-like proteinPolycystin-1Channel protein levelsCyclic mechanical stretchControl miceInterstitial fibrosisStress-induced activationCardiac massMechanical stress-induced activationCardiac functionRNAi-dependent knockdownCardiac hypertrophyLittermate controlsSec63 and Xbp1 regulate IRE1α activity and polycystic disease severity
Fedeles SV, So JS, Shrikhande A, Lee SH, Gallagher AR, Barkauskas CE, Somlo S, Lee AH. Sec63 and Xbp1 regulate IRE1α activity and polycystic disease severity. Journal Of Clinical Investigation 2015, 125: 1955-1967. PMID: 25844898, PMCID: PMC4463201, DOI: 10.1172/jci78863.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell LineDisease Models, AnimalDNA HelicasesDNA-Binding ProteinsEndoribonucleasesFemaleGlucosidasesIntracellular Signaling Peptides and ProteinsKidneyMaleMiceMice, Inbred C57BLMice, KnockoutMice, TransgenicMolecular ChaperonesPolycystic Kidney, Autosomal DominantPolycystic Kidney, Autosomal RecessiveProtein Serine-Threonine KinasesProtein Structure, TertiaryReceptors, G-Protein-CoupledRecombinant Fusion ProteinsRegulatory Factor X Transcription FactorsRNA SplicingRNA, Small InterferingRNA-Binding ProteinsTranscription FactorsTransfectionTRPP Cation ChannelsUnfolded Protein ResponseX-Box Binding Protein 1ConceptsG protein-coupled receptor proteolysis siteCyst formationPolycystic liver diseaseGPS cleavagePolycystin-1IRE1α-XBP1 branchMurine genetic modelsPolycystic kidney phenotypeLiver diseasePolycystic diseaseCystic diseaseDisease manifestationsMurine modelDisease severityKidney phenotypeXBP1 activationUnfolded protein response pathwayDiseaseXBP1 overexpressionPC1 functionsProtein response pathwayEnforced expressionMiceXBP1Activation of XBP1
2014
Altered trafficking and stability of polycystins underlie polycystic kidney disease
Cai Y, Fedeles SV, Dong K, Anyatonwu G, Onoe T, Mitobe M, Gao JD, Okuhara D, Tian X, Gallagher AR, Tang Z, Xie X, Lalioti MD, Lee AH, Ehrlich BE, Somlo S. Altered trafficking and stability of polycystins underlie polycystic kidney disease. Journal Of Clinical Investigation 2014, 124: 5129-5144. PMID: 25365220, PMCID: PMC4348948, DOI: 10.1172/jci67273.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell LineCiliaHumansMiceMice, TransgenicMutation, MissensePolycystic Kidney DiseasesProtein StabilityProtein Structure, TertiaryProtein TransportTRPP Cation ChannelsConceptsG-protein-coupled receptor proteolytic sitePolycystic kidney diseaseKidney diseaseGPS cleavageAutosomal dominant polycystic kidney diseaseMissense mutationsDominant polycystic kidney diseasePolycystin-1Polycystin-2Murine modelSevere formPathogenic missense mutationsPKD1 mutationsCOOH-terminal fragmentDiseaseMissense variantsExpression levelsFunctional assaysCell-based systemsAltered trafficking