2023
Applications of CRISPR technology in cellular immunotherapy
Zhou X, Renauer P, Zhou L, Fang S, Chen S. Applications of CRISPR technology in cellular immunotherapy. Immunological Reviews 2023, 320: 199-216. PMID: 37449673, PMCID: PMC10787818, DOI: 10.1111/imr.13241.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsImmunogenetic Metabolomics Reveals Key Enzymes That Modulate CAR T-cell Metabolism and Function.
Renauer P, Park J, Bai M, Acosta A, Lee W, Lin G, Zhang Y, Dai X, Wang G, Errami Y, Wu T, Clark P, Ye L, Yang Q, Chen S. Immunogenetic Metabolomics Reveals Key Enzymes That Modulate CAR T-cell Metabolism and Function. Cancer Immunology Research 2023, 11: 1068-1084. PMID: 37253111, PMCID: PMC10527769, DOI: 10.1158/2326-6066.cir-22-0565.Peer-Reviewed Original ResearchConceptsCAR T cellsHER2-specific CAR T cellsT cellsTumor microenvironmentChimeric antigen receptor T cellsT cell-based immunotherapyAntigen receptor T cellsCD19-specific chimeric antigen receptor (CAR) T cellsCAR T-cell therapyCell-based immunotherapyReceptor T cellsT-cell therapyVivo colorectal cancer modelsColorectal cancer modelT cell functionT cell metabolismTumor infiltrationEvasion mechanismsImmunosuppressive metaboliteImmune evasionCancer modelImmunologic analysisCD19-specificUnfavorable tumor microenvironmentPDK1 deficiency
2022
Double knockout CRISPR screen for cancer resistance to T cell cytotoxicity
Park J, Codina A, Ye L, Lam S, Guo J, Clark P, Zhou X, Peng L, Chen S. Double knockout CRISPR screen for cancer resistance to T cell cytotoxicity. Journal Of Hematology & Oncology 2022, 15: 172. PMID: 36456981, PMCID: PMC9716677, DOI: 10.1186/s13045-022-01389-y.Peer-Reviewed Original ResearchConceptsT cell cytotoxicityCell cytotoxicityT cell killingTumor suppressorCancer patientsImmune responseAvailable agentsSurvival analysisClinical patientsCancer treatmentCancer cellsCancer resistanceDirect targetingPotential new conceptCancer mutationsPatientsCell killingNormal samplesResistance pathwaysCellular responsesSuch resistanceCytotoxicityResistance genesGenome Engineering for Next-Generation Cellular Immunotherapies
Park JJ, Lee KAV, Lam SZ, Tang K, Chen S. Genome Engineering for Next-Generation Cellular Immunotherapies. Biochemistry 2022, 62: 3455-3464. PMID: 35930700, PMCID: PMC11320893, DOI: 10.1021/acs.biochem.2c00340.Peer-Reviewed Original ResearchConceptsGenome engineeringCellular immunotherapySynthetic biology approachesKnockout of genesGenome engineering approachesGenetic screening approachCell therapyNK cell therapyCAR-NK cellsBiology approachHost-graft interactionsNovel target discoveryLong-term persistenceImmune cell typesCRISPR-CasFuture therapeutic developmentTarget discoveryGenetic modificationCell typesAllogeneic contextTumor effectA genome-scale gain-of-function CRISPR screen in CD8 T cells identifies proline metabolism as a means to enhance CAR-T therapy
Ye L, Park JJ, Peng L, Yang Q, Chow RD, Dong MB, Lam SZ, Guo J, Tang E, Zhang Y, Wang G, Dai X, Du Y, Kim HR, Cao H, Errami Y, Clark P, Bersenev A, Montgomery RR, Chen S. A genome-scale gain-of-function CRISPR screen in CD8 T cells identifies proline metabolism as a means to enhance CAR-T therapy. Cell Metabolism 2022, 34: 595-614.e14. PMID: 35276062, PMCID: PMC8986623, DOI: 10.1016/j.cmet.2022.02.009.Peer-Reviewed Original ResearchConceptsCAR T cellsT cell-based immunotherapyRight molecular targetCell-based immunotherapyCAR-T therapyChimeric antigen receptorMultiple cancer modelsCAR-T efficacyFunction CRISPR screensCD8 TPrimary CD8Immune functionImmunological diseasesImmune boosterCancer modelAntigen receptorDistinct gene expressionMolecular targetsCRISPR activation screensMetabolic programsImmunological analysisTherapyCancerEfficacyActivation screens
2021
Tumor immunology CRISPR screening: present, past, and future
Dong MB, Tang K, Zhou X, Zhou JJ, Chen S. Tumor immunology CRISPR screening: present, past, and future. Trends In Cancer 2021, 8: 210-225. PMID: 34920978, PMCID: PMC8854335, DOI: 10.1016/j.trecan.2021.11.009.Peer-Reviewed Original Research
2019
Multiplexed activation of endogenous genes by CRISPRa elicits potent antitumor immunity
Wang G, Chow RD, Bai Z, Zhu L, Errami Y, Dai X, Dong MB, Ye L, Zhang X, Renauer PA, Park JJ, Shen L, Ye H, Fuchs CS, Chen S. Multiplexed activation of endogenous genes by CRISPRa elicits potent antitumor immunity. Nature Immunology 2019, 20: 1494-1505. PMID: 31611701, PMCID: PMC6858551, DOI: 10.1038/s41590-019-0500-4.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigen PresentationAntigens, NeoplasmCancer VaccinesCell Line, TumorClustered Regularly Interspaced Short Palindromic RepeatsCoculture TechniquesCombined Modality TherapyDependovirusDisease Models, AnimalFemaleGene Expression Regulation, NeoplasticGenetic TherapyGenetic VectorsHEK293 CellsHumansImmunotherapyInjections, IntralesionalLymphocytes, Tumor-InfiltratingMaleMiceNeoplasmsT-Lymphocytes, CytotoxicTumor MicroenvironmentConceptsAntitumor immunityImmune responseCell-based vaccination strategiesElicits potent antitumor immunityEnhanced T cell infiltrationElicit potent immune responsesCurrent immunotherapy modalitiesStrong antitumor immunityAntitumor immune responseT cell infiltrationPotent antitumor immunityPotent immune responsesAntitumor immune signaturesMultiple cancer typesImmune signaturesImmunotherapy modalitiesTreatment modalitiesCell infiltrationVaccination strategiesTumor antigensVirus deliveryTumor microenvironmentImmunotherapyCancer typesCancer treatmentConvergent Identification and Interrogation of Tumor-Intrinsic Factors that Modulate Cancer Immunity In Vivo
Codina A, Renauer PA, Wang G, Chow RD, Park JJ, Ye H, Zhang K, Dong MB, Gassaway B, Ye L, Errami Y, Shen L, Chang A, Jain D, Herbst RS, Bosenberg M, Rinehart J, Fan R, Chen S. Convergent Identification and Interrogation of Tumor-Intrinsic Factors that Modulate Cancer Immunity In Vivo. Cell Systems 2019, 8: 136-151.e7. PMID: 30797773, PMCID: PMC6592847, DOI: 10.1016/j.cels.2019.01.004.Peer-Reviewed Original ResearchMeSH KeywordsClustered Regularly Interspaced Short Palindromic RepeatsGene Expression ProfilingNeoplasmsConceptsSingle-cell transcriptomic profilingExtracellular protein productionCancer cellsMutant cellsFunctional interrogationGenetic programCRISPR screensTranscriptomic profilingTumor-intrinsic mutationsTranscriptomic alterationsTumor microenvironmentProtein productionPRKAR1A lossGenetic makeupHost myeloid cellsTumor-intrinsic factorsDrastic alterationsCytometry analysisConvergent identificationMyeloid cellsCellsImmunocompetent hostsCancer immunityMutant tumorsHost
2018
Sno-derived RNAs are prevalent molecular markers of cancer immunity
Chow RD, Chen S. Sno-derived RNAs are prevalent molecular markers of cancer immunity. Oncogene 2018, 37: 6442-6462. PMID: 30072739, PMCID: PMC6294694, DOI: 10.1038/s41388-018-0420-z.Peer-Reviewed Original ResearchConceptsCancer immunityCytolytic T cell activityCancer typesHuman cancer immunityTumor immune signatureT cell infiltrationT cell activityTumor immune microenvironmentHuman cancersClinical outcomesImmunosuppressive markersPatient survivalCell infiltrationDistinct cancer typesTumor vasculatureCell activityPatient samplesExpression signaturesImmunityCancerMarkersMolecular markersLike propertiesSdRNAsLarge panelProgrammable sequential mutagenesis by inducible Cpf1 crRNA array inversion
Chow RD, Kim HR, Chen S. Programmable sequential mutagenesis by inducible Cpf1 crRNA array inversion. Nature Communications 2018, 9: 1903. PMID: 29765043, PMCID: PMC5954137, DOI: 10.1038/s41467-018-04158-z.Peer-Reviewed Original ResearchCancer CRISPR Screens In Vivo
Chow RD, Chen S. Cancer CRISPR Screens In Vivo. Trends In Cancer 2018, 4: 349-358. PMID: 29709259, PMCID: PMC5935117, DOI: 10.1016/j.trecan.2018.03.002.BooksMapping a functional cancer genome atlas of tumor suppressors in mouse liver using AAV-CRISPR–mediated direct in vivo screening
Wang G, Chow RD, Ye L, Guzman CD, Dai X, Dong MB, Zhang F, Sharp PA, Platt RJ, Chen S. Mapping a functional cancer genome atlas of tumor suppressors in mouse liver using AAV-CRISPR–mediated direct in vivo screening. Science Advances 2018, 4: eaao5508. PMID: 29503867, PMCID: PMC5829971, DOI: 10.1126/sciadv.aao5508.Peer-Reviewed Original ResearchConceptsTumor suppressorCancer Genome AtlasHuman cancersSgRNA target sitesGenome AtlasCancer Genomics ConsortiumPutative tumor suppressor geneNumerous human cancersTumor suppressor geneCRISPR screensClassical oncogenesGenomics ConsortiumSuppressor geneFunctional variantsFunctional consequencesMutational landscapeAutochthonous mouse modelSuppressorTarget siteAAV-CRISPRGenesMouse liverMultiple variantsLiver tumorigenesisVivo