2024
A B cell screen against endogenous retroviruses identifies glycan-reactive IgM that recognizes a broad array of enveloped viruses
Yang Y, Treger R, Hernandez-Bird J, Lu P, Mao T, Iwasaki A. A B cell screen against endogenous retroviruses identifies glycan-reactive IgM that recognizes a broad array of enveloped viruses. Science Immunology 2024, 9: eadd6608. PMID: 39514636, DOI: 10.1126/sciimmunol.add6608.Peer-Reviewed Original ResearchConceptsB-1 cellsB cell-deficient miceEndogenous retrovirusesEnveloped virusesNatural IgM antibodiesGermline-encoded antibodiesNaive miceInnate antiviral mechanismsGenetic invadersB cellsVertebrate genomesNatural antibody repertoireRepertoire profilingSurface antigensInfectious endogenous retrovirusIgM antibodiesSelf-proteinsComplement pathwayAntibody repertoireAntibodiesMiceRetrovirusesVirusSensor stimulationGlycoprotein
2023
Developing synthetic tools to decipher the tumor–immune interactome
Weizman O, Luyten S, Lu P, Song E, Qin K, Mostaghimi D, Ring A, Iwasaki A. Developing synthetic tools to decipher the tumor–immune interactome. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2306632120. PMID: 37871202, PMCID: PMC10622925, DOI: 10.1073/pnas.2306632120.Peer-Reviewed Original ResearchConceptsImmune cellsImmune-based therapiesTumor-immune cell interactionsDifferent immunotherapiesRetroviral reportersSensitive tumorsImmune surveillanceTumor subtypesTumor microenvironmentSynthetic Notch receptorCell interactionsCell contactTissue functionTissue locationNotch receptorsVivoOptimal tissue functionCellsComprehensive landscapeImmunotherapyTherapyTumorsImmunogenicitySubtypes
2022
Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation
Fernández-Castañeda A, Lu P, Geraghty AC, Song E, Lee MH, Wood J, O'Dea MR, Dutton S, Shamardani K, Nwangwu K, Mancusi R, Yalçın B, Taylor KR, Acosta-Alvarez L, Malacon K, Keough MB, Ni L, Woo PJ, Contreras-Esquivel D, Toland AMS, Gehlhausen JR, Klein J, Takahashi T, Silva J, Israelow B, Lucas C, Mao T, Peña-Hernández MA, Tabachnikova A, Homer RJ, Tabacof L, Tosto-Mancuso J, Breyman E, Kontorovich A, McCarthy D, Quezado M, Vogel H, Hefti MM, Perl DP, Liddelow S, Folkerth R, Putrino D, Nath A, Iwasaki A, Monje M. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell 2022, 185: 2452-2468.e16. PMID: 35768006, PMCID: PMC9189143, DOI: 10.1016/j.cell.2022.06.008.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionMicroglial reactivityCognitive impairmentCSF cytokines/chemokinesCytokines/chemokinesSARS-CoV-2Early time pointsCCL11 levelsMild COVIDRespiratory influenzaHippocampal neurogenesisOligodendrocyte lossHippocampal pathologyMyelin lossNeurological symptomsImpaired neurogenesisCOVID survivorsNeurobiological effectsNeural dysregulationMyelin dysregulationCCL11Neural cellsTime pointsNeurogenesisMiceDe novo emergence of a remdesivir resistance mutation during treatment of persistent SARS-CoV-2 infection in an immunocompromised patient: a case report
Gandhi S, Klein J, Robertson AJ, Peña-Hernández MA, Lin MJ, Roychoudhury P, Lu P, Fournier J, Ferguson D, Mohamed Bakhash SAK, Catherine Muenker M, Srivathsan A, Wunder EA, Kerantzas N, Wang W, Lindenbach B, Pyle A, Wilen CB, Ogbuagu O, Greninger AL, Iwasaki A, Schulz WL, Ko AI. De novo emergence of a remdesivir resistance mutation during treatment of persistent SARS-CoV-2 infection in an immunocompromised patient: a case report. Nature Communications 2022, 13: 1547. PMID: 35301314, PMCID: PMC8930970, DOI: 10.1038/s41467-022-29104-y.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionVirologic responsePersistent SARS-CoV-2 infectionResistance mutationsPre-treatment specimensB-cell deficiencyRemdesivir resistanceRemdesivir therapyViral sheddingCase reportAntiviral agentsPatientsCombinatorial therapyInfectionTherapyWhole-genome sequencingTreatmentImportance of monitoringDe novo emergenceFold increaseRNA-dependent RNA polymeraseNovo emergencePotential benefitsMutationsIndolentLack of association between pandemic chilblains and SARS-CoV-2 infection
Gehlhausen JR, Little AJ, Ko CJ, Emmenegger M, Lucas C, Wong P, Klein J, Lu P, Mao T, Jaycox J, Wang E, Ugwu N, Muenker C, Mekael D, Klein R, Patrignelli R, Antaya R, McNiff J, Damsky W, Kamath K, Shon J, Ring A, Yildirim I, Omer S, Ko A, Aguzzi A, Iwasaki A, Obaid A, Lu-Culligan A, Nelson A, Brito A, Nunez A, Martin A, Watkins A, Geng B, Kalinich C, Harden C, Todeasa C, Jensen C, Kim D, McDonald D, Shepard D, Courchaine E, White E, Song E, Silva E, Kudo E, DeIuliis G, Rahming H, Park H, Matos I, Nouws J, Valdez J, Fauver J, Lim J, Rose K, Anastasio K, Brower K, Glick L, Sharma L, Sewanan L, Knaggs L, Minasyan M, Batsu M, Petrone M, Kuang M, Nakahata M, Campbell M, Linehan M, Askenase M, Simonov M, Smolgovsky M, Sonnert N, Naushad N, Vijayakumar P, Martinello R, Datta R, Handoko R, Bermejo S, Prophet S, Bickerton S, Velazquez S, Alpert T, Rice T, Khoury-Hanold W, Peng X, Yang Y, Cao Y, Strong Y. Lack of association between pandemic chilblains and SARS-CoV-2 infection. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2122090119. PMID: 35217624, PMCID: PMC8892496, DOI: 10.1073/pnas.2122090119.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionPrior SARS-CoV-2 infectionSARS-CoV-2PC biopsiesAcute respiratory syndrome coronavirus 2 pandemicSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemicT-cell receptor sequencingCell receptor sequencingT cell responsesCoronavirus 2 pandemicEnzyme-linked immunosorbent assayLack of associationCOVID toesSkin eruptionAntibody responseImmunohistochemistry studiesBackground seroprevalenceTissue microarrayViral infectionStimulation assaysCell responsesInfectionChilblainsImmunosorbent assayAbortive infectionEndogenous Retroviruses Provide Protection Against Vaginal HSV-2 Disease
Jayewickreme R, Mao T, Philbrick W, Kong Y, Treger RS, Lu P, Rakib T, Dong H, Dang-Lawson M, Guild WA, Lau TJ, Iwasaki A, Tokuyama M. Endogenous Retroviruses Provide Protection Against Vaginal HSV-2 Disease. Frontiers In Immunology 2022, 12: 758721. PMID: 35058919, PMCID: PMC8764156, DOI: 10.3389/fimmu.2021.758721.Peer-Reviewed Original ResearchConceptsHSV-2 infectionHSV-2 diseaseHerpes simplex virus type 2 infectionSimplex virus type 2 infectionEnhanced type I interferonIntravaginal HSV-2 infectionVaginal HSV-2 infectionVirus type 2 infectionEndogenous retrovirusesReceptor-deficient miceType 2 infectionHigh systemic levelsWildtype C57BL/6 miceType I interferonTLR7-/- miceC57BL/6 miceInfectious endogenous retrovirusDeficient miceIntravaginal applicationAntiviral immunityI interferonVaginal tissueDetrimental functionsTLR7Mice
2021
Longitudinal Immune Profiling of a Severe Acute Respiratory Syndrome Coronavirus 2 Reinfection in a Solid Organ Transplant Recipient
Klein J, Brito AF, Trubin P, Lu P, Wong P, Alpert T, Peña-Hernández MA, Haynes W, Kamath K, Liu F, Vogels CBF, Fauver JR, Lucas C, Oh J, Mao T, Silva J, Wyllie AL, Muenker MC, Casanovas-Massana A, Moore AJ, Petrone ME, Kalinich CC, Dela Cruz C, Farhadian S, Ring A, Shon J, Ko AI, Grubaugh ND, Israelow B, Iwasaki A, Azar MM, Team F. Longitudinal Immune Profiling of a Severe Acute Respiratory Syndrome Coronavirus 2 Reinfection in a Solid Organ Transplant Recipient. The Journal Of Infectious Diseases 2021, 225: 374-384. PMID: 34718647, PMCID: PMC8807168, DOI: 10.1093/infdis/jiab553.Peer-Reviewed Original ResearchConceptsSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfectionLongitudinal immune profilingTransplant recipientsImmune profilingPrimary SARS-CoV-2 infectionCD4 T cell poolMale renal transplant recipientSolid organ transplant recipientsSARS-CoV-2 reinfectionSARS-CoV-2 antibodiesSARS-CoV-2 infectionWhole viral genome sequencingRenal transplant recipientsImmune escape mutationsOrgan transplant recipientsT cell poolTime of reinfectionCoronavirus disease 2019Lower neutralization titersHumoral memory responsesViral genome sequencingInitial diagnosisImmunologic deficiencyHumoral responseImmunologic investigationsImpact of circulating SARS-CoV-2 variants on mRNA vaccine-induced immunity
Lucas C, Vogels CBF, Yildirim I, Rothman JE, Lu P, Monteiro V, Gehlhausen JR, Campbell M, Silva J, Tabachnikova A, Peña-Hernandez MA, Muenker MC, Breban MI, Fauver JR, Mohanty S, Huang J, Shaw A, Ko A, Omer S, Grubaugh N, Iwasaki A. Impact of circulating SARS-CoV-2 variants on mRNA vaccine-induced immunity. Nature 2021, 600: 523-529. PMID: 34634791, PMCID: PMC9348899, DOI: 10.1038/s41586-021-04085-y.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 variantsMRNA vaccine-induced immunityT-cell activation markersSARS-CoV-2 antibodiesSecond vaccine doseVaccine-induced immunityCell activation markersT cell responsesHigh antibody titresSARS-CoV-2Vaccine boosterVaccine doseActivation markersVaccine dosesHumoral immunityAntibody titresMRNA vaccinesVitro stimulationNeutralization capacityNeutralization responseCell responsesE484KNucleocapsid peptideAntibody-binding sitesGreater reductionReply to: A finding of sex similarities rather than differences in COVID-19 outcomes
Takahashi T, Ellingson MK, Wong P, Israelow B, Lucas C, Klein J, Silva J, Mao T, Oh JE, Tokuyama M, Lu P, Venkataraman A, Park A, Liu F, Meir A, Sun J, Wang EY, Casanovas-Massana A, Wyllie AL, Vogels CBF, Earnest R, Lapidus S, Ott IM, Moore AJ, Shaw A, Fournier JB, Odio CD, Farhadian S, Dela Cruz C, Grubaugh ND, Schulz WL, Ring AM, Ko AI, Omer SB, Iwasaki A. Reply to: A finding of sex similarities rather than differences in COVID-19 outcomes. Nature 2021, 597: e10-e11. PMID: 34552250, DOI: 10.1038/s41586-021-03645-6.Peer-Reviewed Original ResearchEvidence for SARS-CoV-2 Spike Protein in the Urine of COVID-19 Patients
George S, Pal AC, Gagnon J, Timalsina S, Singh P, Vydyam P, Munshi M, Chiu JE, Renard I, Harden CA, Ott IM, Watkins AE, Vogels CBF, Lu P, Tokuyama M, Venkataraman A, Casanovas-Massana A, Wyllie AL, Rao V, Campbell M, Farhadian SF, Grubaugh ND, Dela Cruz CS, Ko AI, Perez A, Akaho EH, Moledina DG, Testani J, John AR, Ledizet M, Mamoun CB, Team A. Evidence for SARS-CoV-2 Spike Protein in the Urine of COVID-19 Patients. Kidney360 2021, 2: 924-936. PMID: 35373072, PMCID: PMC8791366, DOI: 10.34067/kid.0002172021.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 spike proteinSARS-CoV-2Spike proteinUrine samplesSARS-CoV-2 infectionYale-New Haven HospitalCOVID-19 patientsAntigen capture assayDetectable viral RNANew Haven HospitalPositive PCR resultsPossible long-term consequencesSpike S1 proteinNP PCRChildren's HospitalNasopharyngeal swabsSARS-CoV-2 spike S1 proteinRenal abnormalitiesLong-term effectsCystatin CLong-term consequencesHospitalUrineViral RNAAlbuminuriaAuthor Correction: Delayed production of neutralizing antibodies correlates with fatal COVID-19
Lucas C, Klein J, Sundaram ME, Liu F, Wong P, Silva J, Mao T, Oh JE, Mohanty S, Huang J, Tokuyama M, Lu P, Venkataraman A, Park A, Israelow B, Vogels CBF, Muenker MC, Chang CH, Casanovas-Massana A, Moore AJ, Zell J, Fournier JB, Wyllie A, Campbell M, Lee A, Chun H, Grubaugh N, Schulz W, Farhadian S, Dela Cruz C, Ring A, Shaw A, Wisnewski A, Yildirim I, Ko A, Omer S, Iwasaki A. Author Correction: Delayed production of neutralizing antibodies correlates with fatal COVID-19. Nature Medicine 2021, 27: 1309-1309. PMID: 34145437, PMCID: PMC8212078, DOI: 10.1038/s41591-021-01416-4.Peer-Reviewed Original ResearchLongitudinal immune profiling of a SARS-CoV-2 reinfection in a solid organ transplant recipient.
Klein J, Brito A, Trubin P, Lu P, Wong P, Alpert T, Pena-Hernandez M, Haynes W, Kamath K, Liu F, Vogels C, Fauver J, Lucas C, Oh JE, Mao T, Silva J, Wyllie A, Muenker MC, Casanovas-Massana A, Moore A, Petrone M, Kalinich C, Cruz CD, Farhadian S, Ring A, Shon J, Ko A, Grubaugh N, Goldman-Israelow B, Iwasaki A, Azar M. Longitudinal immune profiling of a SARS-CoV-2 reinfection in a solid organ transplant recipient. Research Square 2021 PMID: 34013255, PMCID: PMC8132249, DOI: 10.21203/rs.3.rs-405958/v1.Peer-Reviewed Original ResearchDelayed production of neutralizing antibodies correlates with fatal COVID-19
Lucas C, Klein J, Sundaram ME, Liu F, Wong P, Silva J, Mao T, Oh JE, Mohanty S, Huang J, Tokuyama M, Lu P, Venkataraman A, Park A, Israelow B, Vogels CBF, Muenker MC, Chang CH, Casanovas-Massana A, Moore AJ, Zell J, Fournier JB, Wyllie A, Campbell M, Lee A, Chun H, Grubaugh N, Schulz W, Farhadian S, Dela Cruz C, Ring A, Shaw A, Wisnewski A, Yildirim I, Ko A, Omer S, Iwasaki A. Delayed production of neutralizing antibodies correlates with fatal COVID-19. Nature Medicine 2021, 27: 1178-1186. PMID: 33953384, PMCID: PMC8785364, DOI: 10.1038/s41591-021-01355-0.Peer-Reviewed Original ResearchConceptsDeceased patientsAntibody levelsAntibody responseDisease severityAnti-S IgG levelsCOVID-19 disease outcomesFatal COVID-19Impaired viral controlWorse clinical progressionWorse disease severitySevere COVID-19Length of hospitalizationImmunoglobulin G levelsHumoral immune responseCoronavirus disease 2019COVID-19 mortalityCOVID-19Domain (RBD) IgGSeroconversion kineticsDisease courseIgG levelsClinical parametersClinical progressionHumoral responseDisease onsetNeuroinvasion of SARS-CoV-2 in human and mouse brain
Song E, Zhang C, Israelow B, Lu-Culligan A, Prado AV, Skriabine S, Lu P, Weizman OE, Liu F, Dai Y, Szigeti-Buck K, Yasumoto Y, Wang G, Castaldi C, Heltke J, Ng E, Wheeler J, Alfajaro MM, Levavasseur E, Fontes B, Ravindra NG, Van Dijk D, Mane S, Gunel M, Ring A, Kazmi SAJ, Zhang K, Wilen CB, Horvath TL, Plu I, Haik S, Thomas JL, Louvi A, Farhadian SF, Huttner A, Seilhean D, Renier N, Bilguvar K, Iwasaki A. Neuroinvasion of SARS-CoV-2 in human and mouse brain. Journal Of Experimental Medicine 2021, 218: e20202135. PMID: 33433624, PMCID: PMC7808299, DOI: 10.1084/jem.20202135.Peer-Reviewed Original ResearchConceptsSARS-CoV-2Central nervous systemSARS-CoV-2 neuroinvasionImmune cell infiltratesCOVID-19 patientsType I interferon responseMultiple organ systemsCOVID-19I interferon responseHuman brain organoidsNeuroinvasive capacityCNS infectionsCell infiltrateNeuronal infectionPathological featuresCortical neuronsRespiratory diseaseDirect infectionCerebrospinal fluidNervous systemMouse brainInterferon responseOrgan systemsHuman ACE2Infection
2020
SalivaDirect: A simplified and flexible platform to enhance SARS-CoV-2 testing capacity
Vogels CBF, Watkins AE, Harden CA, Brackney DE, Shafer J, Wang J, Caraballo C, Kalinich CC, Ott IM, Fauver JR, Kudo E, Lu P, Venkataraman A, Tokuyama M, Moore AJ, Muenker MC, Casanovas-Massana A, Fournier J, Bermejo S, Campbell M, Datta R, Nelson A, Team Y, Anastasio K, Askenase M, Batsu M, Bickerton S, Brower K, Bucklin M, Cahill S, Cao Y, Courchaine E, DeIuliis G, Earnest R, Geng B, Goldman-Israelow B, Handoko R, Khoury-Hanold W, Kim D, Knaggs L, Kuang M, Lapidus S, Lim J, Linehan M, Lu-Culligan A, Martin A, Matos I, McDonald D, Minasyan M, Nakahata M, Naushad N, Nouws J, Obaid A, Odio C, Oh J, Omer S, Park A, Park H, Peng X, Petrone M, Prophet S, Rice T, Rose K, Sewanan L, Sharma L, Shaw A, Shepard D, Smolgovsky M, Sonnert N, Strong Y, Todeasa C, Valdez J, Velazquez S, Vijayakumar P, White E, Yang Y, Dela Cruz C, Ko A, Iwasaki A, Krumholz H, Matheus J, Hui P, Liu C, Farhadian S, Sikka R, Wyllie A, Grubaugh N. SalivaDirect: A simplified and flexible platform to enhance SARS-CoV-2 testing capacity. Med 2020, 2: 263-280.e6. PMID: 33521748, PMCID: PMC7836249, DOI: 10.1016/j.medj.2020.12.010.Peer-Reviewed Original ResearchConceptsEmergency use authorizationSARS-CoV-2 testingSARS-CoV-2 screeningSARS-CoV-2 testing capacitySupply chain shortagesHospital cohortNasopharyngeal swabsHealthy individualsDrug AdministrationHigh positive agreementQRT-PCR assaysDiagnostic testsU.S. FoodSafe reopeningTesting capacityGlobal healthPositive agreementFast GrantLower ratesSalivaNucleic acid extractionSwabsValid alternativeAssay costsCollection tubesSaliva or Nasopharyngeal Swab Specimens for Detection of SARS-CoV-2
Wyllie AL, Fournier J, Casanovas-Massana A, Campbell M, Tokuyama M, Vijayakumar P, Warren JL, Geng B, Muenker MC, Moore AJ, Vogels CBF, Petrone ME, Ott IM, Lu P, Venkataraman A, Lu-Culligan A, Klein J, Earnest R, Simonov M, Datta R, Handoko R, Naushad N, Sewanan LR, Valdez J, White EB, Lapidus S, Kalinich CC, Jiang X, Kim DJ, Kudo E, Linehan M, Mao T, Moriyama M, Oh JE, Park A, Silva J, Song E, Takahashi T, Taura M, Weizman OE, Wong P, Yang Y, Bermejo S, Odio CD, Omer SB, Dela Cruz CS, Farhadian S, Martinello RA, Iwasaki A, Grubaugh ND, Ko AI. Saliva or Nasopharyngeal Swab Specimens for Detection of SARS-CoV-2. New England Journal Of Medicine 2020, 383: 1283-1286. PMID: 32857487, PMCID: PMC7484747, DOI: 10.1056/nejmc2016359.Peer-Reviewed Original ResearchMouse Model of SARS-CoV-2 Reveals Inflammatory Role of Type I Interferon Signaling.
Goldman-Israelow B, Song E, Mao T, Lu P, Meir A, Liu F, Alfajaro MM, Wei J, Dong H, Homer R, Ring A, Wilen C, Iwasaki A. Mouse Model of SARS-CoV-2 Reveals Inflammatory Role of Type I Interferon Signaling. SSRN 2020, 3628297. PMID: 32714125, PMCID: PMC7366812, DOI: 10.2139/ssrn.3628297.Peer-Reviewed Original Research
2017
Germinal-center development of memory B cells driven by IL-9 from follicular helper T cells
Wang Y, Shi J, Yan J, Xiao Z, Hou X, Lu P, Hou S, Mao T, Liu W, Ma Y, Zhang L, Yang X, Qi H. Germinal-center development of memory B cells driven by IL-9 from follicular helper T cells. Nature Immunology 2017, 18: 921-930. PMID: 28650481, DOI: 10.1038/ni.3788.Peer-Reviewed Original ResearchEphrin B1–mediated repulsion and signaling control germinal center T cell territoriality and function
Lu P, Shih C, Qi H. Ephrin B1–mediated repulsion and signaling control germinal center T cell territoriality and function. Science 2017, 356 PMID: 28408722, DOI: 10.1126/science.aai9264.Peer-Reviewed Original Research
2013
Identification of a new isoform of the murine Sh2d1a gene and its functional implications
Wu L, Lu P, Ma W, Chu C, Xu H, Qi H. Identification of a new isoform of the murine Sh2d1a gene and its functional implications. Science China Life Sciences 2013, 57: 81-87. PMID: 24369347, DOI: 10.1007/s11427-013-4584-z.Peer-Reviewed Original ResearchConceptsNon-functional isoformsSrc homologyNew isoformAmino acid proteinIntracellular adaptor proteinPhosphotyrosine bindingSH2D1A geneAdaptor proteinAlternative splicingSap proteinsNew exonsProtein stabilityX chromosomeSplice isoformsFunctional analysisCryptic exonFunction mutationsAmino acidsFunctional implicationsStructural regionsIsoformsSAP-2GenesHematopoietic systemProtein