2021
Early identification of patients with acute gastrointestinal bleeding using natural language processing and decision rules
Shung D, Tsay C, Laine L, Chang D, Li F, Thomas P, Partridge C, Simonov M, Hsiao A, Tay JK, Taylor A. Early identification of patients with acute gastrointestinal bleeding using natural language processing and decision rules. Journal Of Gastroenterology And Hepatology 2021, 36: 1590-1597. PMID: 33105045, DOI: 10.1111/jgh.15313.Peer-Reviewed Original ResearchConceptsNatural language processingElectronic health recordsLanguage processingNLP algorithmSystematized NomenclatureReal timeAcute gastrointestinal bleedingBidirectional Encoder RepresentationsDecision rulesEHR-based phenotyping algorithmsGastrointestinal bleedingRisk stratification scoresEncoder RepresentationsData elementsPhenotyping algorithmStratification scoresHealth recordsAlgorithmPhenotyping of patientsEmergency department patientsTime of presentationRisk stratification modelED reviewDeploymentExternal validation
2020
Machine Learning Prognostic Models for Gastrointestinal Bleeding Using Electronic Health Record Data.
Shung D, Laine L. Machine Learning Prognostic Models for Gastrointestinal Bleeding Using Electronic Health Record Data. The American Journal Of Gastroenterology 2020, 115: 1199-1200. PMID: 32530828, PMCID: PMC7415736, DOI: 10.14309/ajg.0000000000000720.Commentaries, Editorials and LettersMeSH KeywordsElectronic Health RecordsGastrointestinal HemorrhageHumansIntensive Care UnitsMachine LearningPrognosisRetrospective StudiesConceptsRisk assessment toolGastrointestinal bleedingIntensive care unit patientsClinical risk assessment toolCare unit patientsElectronic health record dataHealth record dataLevel of careAssessment toolElectronic health recordsAPACHE IVaHospital mortalityHospital courseUnit patientsPrognostic toolClinical practicePrognostic modelHealth recordsRecord dataBleedingExternal validationPatientsLack of generalizabilityMortalityCare