2009
miRNPs: versatile regulators of gene expression in vertebrate cells1
Steitz JA, Vasudevan S. miRNPs: versatile regulators of gene expression in vertebrate cells1. Biochemical Society Transactions 2009, 37: 931-935. PMID: 19754429, DOI: 10.1042/bst0370931.Peer-Reviewed Original ResearchConceptsPost-transcriptional controlAssociation of Ago2Role of miRNAsImmature Xenopus oocytesTNFalpha AREProtein FXR1Contact-inhibited cellsTranslational regulationTranslation activationVersatile regulatorsTranslational efficiencyNegative regulatorGene expressionSpecific miRNACell cycleEffector moleculesCell growthXenopus oocytesAgo2FXR1Regulating the activity of microRNPs in vertebrate cells
Steitz J, Vasudevan S, Cazalla D. Regulating the activity of microRNPs in vertebrate cells. The FASEB Journal 2009, 23: 90.3-90.3. DOI: 10.1096/fasebj.23.1_supplement.90.3.Peer-Reviewed Original ResearchAU-rich sequencesPost-transcriptional controlAssociation of Ago2Role of microRNAsProtein FXR1Translation regulationContact-inhibited cellsVertebrate cellsTranslation upregulationTranslation activationTranslational efficiencyNegative regulatorCell cycleSpecific microRNAsQuiescent cellsS phaseH. saimiriEffector moleculesCell growthMicroRNPsXenopus oocytesMicroRNAsAgo2FXR1Monocyte differentiation
2008
Minor-class splicing occurs in the nucleus of the Xenopus oocyte
Friend K, Kolev NG, Shu MD, Steitz JA. Minor-class splicing occurs in the nucleus of the Xenopus oocyte. RNA 2008, 14: 1459-1462. PMID: 18567814, PMCID: PMC2491479, DOI: 10.1261/rna.1119708.Peer-Reviewed Original ResearchConceptsSmall nuclear ribonucleoproteinMinor class intronsU12-type splicingXenopus oocytesU12-dependent intronsNuclear envelope breakdownCertain eukaryotesMinor spliceosomeVertebrate cellsSplicing substrateNuclear compartmentNuclear ribonucleoproteinRNA intronsAccurate splicingEnvelope breakdownSplicingIntronsCytoplasmOocytesEukaryotesSpliceosomeMeiosisRibonucleoproteinNucleusSmall fraction
2002
Exclusive Interaction of the 15.5 kD Protein with the Terminal Box C/D Motif of a Methylation Guide snoRNP
Szewczak LB, DeGregorio SJ, Strobel SA, Steitz JA. Exclusive Interaction of the 15.5 kD Protein with the Terminal Box C/D Motif of a Methylation Guide snoRNP. Cell Chemical Biology 2002, 9: 1095-1107. PMID: 12401494, DOI: 10.1016/s1074-5521(02)00239-9.Peer-Reviewed Original ResearchConceptsBox C/D motifKD proteinD motifBox C/D snoRNAsBox C/D snoRNPsSite-specific methylationSpliceosomal RNAsDeleterious substitutionsD snoRNAsD snoRNPsBox DExclusive interactionsInteraction sitesXenopus oocytesSnoRNPsProteinMotifSnoRNAsVivoMethylationA89Single interaction siteRNAExocyclic amineOocytes
2001
Splicing Factors SRp20 and 9G8 Promote the Nucleocytoplasmic Export of mRNA
Huang Y, Steitz J. Splicing Factors SRp20 and 9G8 Promote the Nucleocytoplasmic Export of mRNA. Molecular Cell 2001, 7: 899-905. PMID: 11336712, DOI: 10.1016/s1097-2765(01)00233-7.Peer-Reviewed Original ResearchInternal Modification of U2 Small Nuclear (Snrna) Occurs in Nucleoli of Xenopus Oocytes
Yu Y, Shu M, Narayanan A, Terns R, Terns M, Steitz J. Internal Modification of U2 Small Nuclear (Snrna) Occurs in Nucleoli of Xenopus Oocytes. Journal Of Cell Biology 2001, 152: 1279-1288. PMID: 11257127, PMCID: PMC2199211, DOI: 10.1083/jcb.152.6.1279.Peer-Reviewed Original ResearchConceptsNucleolar localizationCajal bodiesU2 RNAInternal modificationSmall nuclearSm binding siteNucleolar localization signalSmall nucleolar RNAsXenopus oocytesCytoplasm of oocytesU2 small nuclearGuanosine capLocalization signalNucleolar RNAsRNAs showSubcellular sitesIntranuclear localizationIsolated nucleiRNABinding sitesNucleoliOocytesNucleotidesCytoplasmU2
1998
AUUUA Sequences Direct mRNA Deadenylation Uncoupled from Decay during Xenopus Early Development
Voeltz G, Steitz J. AUUUA Sequences Direct mRNA Deadenylation Uncoupled from Decay during Xenopus Early Development. Molecular And Cellular Biology 1998, 18: 7537-7545. PMID: 9819439, PMCID: PMC109334, DOI: 10.1128/mcb.18.12.7537.Peer-Reviewed Original ResearchConceptsAU-rich elementsXenopus early developmentGranulocyte-macrophage colony-stimulating factor (GM-CSF) geneUntranslated region sequencesHuman granulocyte-macrophage colony-stimulating factor geneChimeric mRNAMid-blastula transitionEarly developmentColony-stimulating factor geneRNA deadenylationMRNA decayRapid deadenylationMRNA deadenylationDeadenylation activityDeadenylationFactor genesRegion sequencesEgg activationAUUUAC-MycMature eggsXenopus oocytesMRNAOocytesXenopusModification of U6 Spliceosomal RNA Is Guided by Other Small RNAs
Tycowski K, You Z, Graham P, Steitz J. Modification of U6 Spliceosomal RNA Is Guided by Other Small RNAs. Molecular Cell 1998, 2: 629-638. PMID: 9844635, DOI: 10.1016/s1097-2765(00)80161-6.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceCell FractionationCell LineCell NucleolusChromosomal Proteins, Non-HistoneDimerizationHeLa CellsHumansMethylationMiceMolecular Sequence DataNucleic Acid ConformationOligodeoxyribonucleotides, AntisenseOocytesPrecipitin TestsRibonuclease HRNA, Ribosomal, 28SRNA, Small NuclearSpliceosomesXenopus laevisModifications of U2 snRNA are required for snRNP assembly and pre‐mRNA splicing
Yu Y, Shu M, Steitz J. Modifications of U2 snRNA are required for snRNP assembly and pre‐mRNA splicing. The EMBO Journal 1998, 17: 5783-5795. PMID: 9755178, PMCID: PMC1170906, DOI: 10.1093/emboj/17.19.5783.Peer-Reviewed Original ResearchConceptsEnd of U2Native gel analysisPre-mRNA splicingU2 snRNP particleGlycerol gradient analysisPseudouridylation activityGuanosine capSnRNP assemblySpliceosomal snRNAsSplicing activityTMG capSpliceosome assemblyU2 RNAU2 snRNAU2 functionProtein profilesGel analysisSnRNP particlesXenopus oocytesInternal modificationSnRNASplicingPotent inhibitorU2Extensive modification
1996
A small nucleolar RNA requirement for site-specific ribose methylation of rRNA in Xenopus
Tycowski K, Smith C, Shu M, Steitz J. A small nucleolar RNA requirement for site-specific ribose methylation of rRNA in Xenopus. Proceedings Of The National Academy Of Sciences Of The United States Of America 1996, 93: 14480-14485. PMID: 8962077, PMCID: PMC26158, DOI: 10.1073/pnas.93.25.14480.Peer-Reviewed Original ResearchConceptsSmall nucleolar RNA (snoRNA) speciesSite-specific ribose methylationXenopus oocyte systemSnoRNA speciesSnoRNA genesRibose methylationVertebrate cellsRNA speciesMultiple homologsSnoRNA stabilityRRNASnoRNAsOocyte systemRNA requirementsXenopusXenopus oocytesFibrillarinMethylationSpeciesOocytesVertebratesHomologCloningGenesTranscriptsLength suppression in histone messenger RNA 3′-end maturation: Processing defects of insertion mutant premessenger RNAs can be compensated by insertions into the U7 small nuclear RNA
Scharl E, Steitz J. Length suppression in histone messenger RNA 3′-end maturation: Processing defects of insertion mutant premessenger RNAs can be compensated by insertions into the U7 small nuclear RNA. Proceedings Of The National Academy Of Sciences Of The United States Of America 1996, 93: 14659-14664. PMID: 8962110, PMCID: PMC26191, DOI: 10.1073/pnas.93.25.14659.Peer-Reviewed Original ResearchConceptsHistone downstream elementU7 RNAHistone messenger RNASmall nuclear RNARNA processing systemSmall ribonucleoproteinPremessenger RNANuclear RNAPre-mRNAU7 small nuclear RNADownstream elementsCleavage siteRNAMessenger RNAXenopus oocytesBase pairingProcessing defectsU7First demonstrationHistonesRNAsRibonucleoproteinInsertionMRNASites
1994
Requirement for Intron-Encoded U22 Small Nucleolar RNA in 18S Ribosomal RNA Maturation
Tycowski K, Shu M, Steitz J. Requirement for Intron-Encoded U22 Small Nucleolar RNA in 18S Ribosomal RNA Maturation. Science 1994, 266: 1558-1561. PMID: 7985025, DOI: 10.1126/science.7985025.Peer-Reviewed Original ResearchConceptsRibosomal RNASmall RNAsProtein-coding gene transcriptsRibosomal RNA maturationSmall nucleolar RNAsRNA maturationVertebrate cellsCellular functionsNucleolar RNAsHost genesIntron fragmentGene transcriptsRNAXenopus oocytesU22IntronsGenesTranscriptsNucleoliOocytesMaturationTargetingCellsFragmentsDepletionSequence and structural elements critical for U8 snRNP function in Xenopus oocytes are evolutionarily conserved.
Peculis BA, Steitz JA. Sequence and structural elements critical for U8 snRNP function in Xenopus oocytes are evolutionarily conserved. Genes & Development 1994, 8: 2241-2255. PMID: 7958892, DOI: 10.1101/gad.8.18.2241.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceBiological EvolutionChromosomal Proteins, Non-HistoneConserved SequenceFemaleMethylationMolecular Sequence DataMutagenesis, Site-DirectedMutationNucleic Acid ConformationOocytesRibonucleoproteins, Small NuclearRNA CapsRNA PrecursorsRNA Processing, Post-TranscriptionalRNA, Small NuclearXenopus