2009
Adenosine inhibits chemotaxis and induces hepatocyte‐specific genes in bone marrow mesenchymal stem cells
Mohamadnejad M, Sohail MA, Watanabe A, Krause DS, Swenson ES, Mehal WZ. Adenosine inhibits chemotaxis and induces hepatocyte‐specific genes in bone marrow mesenchymal stem cells. Hepatology 2009, 51: 963-973. PMID: 20044808, PMCID: PMC2840188, DOI: 10.1002/hep.23389.Peer-Reviewed Original ResearchConceptsMarrow-derived mesenchymal stem cellsHepatocyte growth factorMSC chemotaxisCellular injuryMesenchymal stem cellsAdenosine concentrationRegulation of HGFInhibition of HGFEffects of adenosineSite of injuryBone marrow-derived mesenchymal stem cellsHepatocyte-specific genesHigh adenosine concentrationsHuman marrow-derived mesenchymal stem cellsAdenosine monophosphateBone marrow mesenchymal stem cellsStem cellsMarrow mesenchymal stem cellsConcentration of adenosineLiver injuryCytosolic calcium signalingStress fiber formationA2A receptorsHepatocyte-like cellsCyclic adenosine monophosphate
2008
Hepatocyte Nuclear Factor‐1 as Marker of Epithelial Phenotype Reveals Marrow‐Derived Hepatocytes, but Not Duct Cells, After Liver Injury in Mice
Swenson ES, Guest I, Ilic Z, Mazzeo‐Helgevold M, Lizardi P, Hardiman C, Sell S, Krause DS. Hepatocyte Nuclear Factor‐1 as Marker of Epithelial Phenotype Reveals Marrow‐Derived Hepatocytes, but Not Duct Cells, After Liver Injury in Mice. Stem Cells 2008, 26: 1768-1777. PMID: 18467658, PMCID: PMC2846397, DOI: 10.1634/stemcells.2008-0148.Peer-Reviewed Original ResearchConceptsMarrow-derived epithelial cellsHepatocyte nuclear factor 1Y chromosomeNuclear factor 1Ductal progenitor cellsLiver injuryInflammatory cellsFemale miceProgenitor cellsEpithelial cellsFactor 1Male bone marrowStable hematopoietic engraftmentBone marrow originColocalization of GFPNuclear markersBone marrow cellsDuctal progenitorsHematopoietic engraftmentChromosomesBone marrowMarrow originPancytokeratin stainingCholangiocyte phenotypeMarrow cellsPhysiological variations of stem cell factor and stromal‐derived factor‐1 in murine models of liver injury and regeneration
Swenson ES, Kuwahara R, Krause DS, Theise ND. Physiological variations of stem cell factor and stromal‐derived factor‐1 in murine models of liver injury and regeneration. Liver International 2008, 28: 308-318. PMID: 18290773, PMCID: PMC2846401, DOI: 10.1111/j.1478-3231.2007.01659.x.Peer-Reviewed Original ResearchConceptsStromal-derived factor-1Oval cell proliferationLiver injuryLiver irradiationBile ductCell proliferationSDF-1 levelsArterial smooth muscleFactor 1Cell factorMarrow-derived progenitorsNormal mouse liverPlasma levelsBACKGROUND/Murine modelStem cell factorKupffer cellsSmooth muscleInjuryRegenerative responseOval cellsDihydrocollidineMouse liverMiceLiver progenitors