2024
CCR2+ monocytes are dispensable to resolve acute pulmonary Pseudomonas aeruginosa infections in WT and cystic fibrosis mice
Öz H, Braga C, Gudneppanavar R, Di Pietro C, Huang P, Zhang P, Krause D, Egan M, Murray T, Bruscia E. CCR2+ monocytes are dispensable to resolve acute pulmonary Pseudomonas aeruginosa infections in WT and cystic fibrosis mice. Journal Of Leukocyte Biology 2024, qiae218. PMID: 39365279, DOI: 10.1093/jleuko/qiae218.Peer-Reviewed Original ResearchLung tissue damageCystic fibrosisTissue damageMonocyte recruitmentImmune responsePulmonary Pseudomonas aeruginosa infectionHyper-inflammatory immune responseCystic fibrosis micePropagate tissue damagePseudomonas aeruginosaLungs of patientsChronic neutrophilic inflammationImmunological response to infectionHost immune responseMonocyte-derived macrophagesTarget monocyte recruitmentSite of injuryResponse to infectionCFTR modulatorsPA infectionChronic inflammatory disease conditionsReduced bactericidal activityAdjunctive therapyClinical outcomesEradicate infection219 CFTR dysfunction shapes airway immune cell compositions contributing to lung pathogenesis in children with cystic fibrosis
Kizilirmak T, Yin H, Garrison A, Browne J, Bruscia E, Egan M, Britto C. 219 CFTR dysfunction shapes airway immune cell compositions contributing to lung pathogenesis in children with cystic fibrosis. Journal Of Cystic Fibrosis 2024, 23: s119. DOI: 10.1016/s1569-1993(24)01059-2.Peer-Reviewed Original ResearchNext generation triplex-forming PNAs for site-specific genome editing of the F508del CFTR mutation
Gupta A, Barone C, Quijano E, Piotrowski-Daspit A, Perera J, Riccardi A, Jamali H, Turchick A, Zao W, Saltzman W, Glazer P, Egan M. Next generation triplex-forming PNAs for site-specific genome editing of the F508del CFTR mutation. Journal Of Cystic Fibrosis 2024 PMID: 39107154, DOI: 10.1016/j.jcf.2024.07.009.Peer-Reviewed Original ResearchCystic fibrosis transmembrane conductance regulatorCystic fibrosis transmembrane conductance regulator geneF508del-CFTR mutationPeptide nucleic acidCFBE cellsBronchial epithelial cellsCystic fibrosisTriplex-forming peptide nucleic acidsDonor DNACFTR mutationsEpithelial cellsCFTR functionMutations associated with genetic diseasesPrimary nasal epithelial cellsAnalysis of genomic DNAGenetic diseasesIncreased CFTR functionDevelopment of peptide nucleic acidsImprove CFTR functionTransmembrane conductance regulatorAutosomal recessive genetic diseaseNasal epithelial cellsAir-liquid interfaceCystic fibrosis bronchial epithelial cellsHuman bronchial epithelial cellsChronic lung inflammation disrupts the quiescent state of hematopoietic stem cells in a cystic fibrosis mouse model
Braga C, Mancuso R, Thompson E, Oez H, Gudneppanavar R, Zhang P, Huang P, Murray T, Egan M, Krause D, Bruscia E. Chronic lung inflammation disrupts the quiescent state of hematopoietic stem cells in a cystic fibrosis mouse model. The Journal Of Immunology 2024, 212: 0062_6002-0062_6002. DOI: 10.4049/jimmunol.212.supp.0062.6002.Peer-Reviewed Original ResearchHematopoietic stem cellsChronic lung inflammationLung inflammationCystic fibrosisBone marrowQuiescent state of HSCsProgression of CF lung diseaseResponse to airway infectionWT hematopoietic stem cellsExpansion of HSCsMultipotent progenitorsCystic fibrosis mouse modelStem cellsCF lung diseasePathways associated with proliferationNeutrophilic lung inflammationPro-inflammatory signatureFibrosis mouse modelATAC-sequencing analysisAirway infectionBM cellsMyeloid lineageLung diseaseMouse modelInflammationEzrin drives adaptation of monocytes to the inflamed lung microenvironment.
Gudneppanavar R, Di Pietro C, Oez H, Zhang P, Huang P, Braga C, Tebaldi T, Biancon G, Kim C, Gonzalez A, Halene S, Krause D, Egan M, Gupta N, Murray T, Bruscia E. Ezrin drives adaptation of monocytes to the inflamed lung microenvironment. The Journal Of Immunology 2024, 212: 0078_5418-0078_5418. DOI: 10.4049/jimmunol.212.supp.0078.5418.Peer-Reviewed Original ResearchRNA-seqActin-binding protein ezrinF-actin distributionImmune response to bacteriaCystic fibrosisIn vitro functional studiesResponse to bacteriaIncreased expression of pro-inflammatory markersCytoskeleton rearrangementF-actinResponse to lung infectionExpressed genesProtein ezrinTranscriptional profilesExpression of pro-inflammatory markersPlasma membranePro-inflammatory markersFunctional studiesEzrinLung extracellular matrixCF miceExtracellular matrixWT micePI3K/Akt signalingLung infection
2023
Future therapies for cystic fibrosis
Allen L, Allen L, Carr S, Davies G, Downey D, Egan M, Forton J, Gray R, Haworth C, Horsley A, Smyth A, Southern K, Davies J. Future therapies for cystic fibrosis. Nature Communications 2023, 14: 693. PMID: 36755044, PMCID: PMC9907205, DOI: 10.1038/s41467-023-36244-2.Peer-Reviewed Original ResearchConceptsMutation-specific drugsCystic fibrosisSymptom-directed treatmentMultisystem clinical manifestationsCystic fibrosis therapyCystic fibrosis transmembrane conductance regulatorGenetic variantsClinical manifestationsFuture therapiesFibrosis therapyTranslational research collaborationsModulator drugsCFTR modulatorsSingle gene disordersHealth inequalitiesTherapyGene variantsImproved treatmentDrugsPatientsFibrosisFibrosis transmembrane conductance regulatorGene disordersTransmembrane conductance regulatorStrategy group
2022
Recruited monocytes/macrophages drive pulmonary neutrophilic inflammation and irreversible lung tissue remodeling in cystic fibrosis
Öz H, Cheng E, Di Pietro C, Tebaldi T, Biancon G, Zeiss C, Zhang P, Huang P, Esquibies S, Britto C, Schupp J, Murray T, Halene S, Krause D, Egan M, Bruscia E. Recruited monocytes/macrophages drive pulmonary neutrophilic inflammation and irreversible lung tissue remodeling in cystic fibrosis. Cell Reports 2022, 41: 111797. PMID: 36516754, PMCID: PMC9833830, DOI: 10.1016/j.celrep.2022.111797.Peer-Reviewed Original ResearchConceptsC motif chemokine receptor 2Monocytes/macrophagesLung tissue damageCystic fibrosisTissue damageCF lungPulmonary neutrophilic inflammationPro-inflammatory environmentChemokine receptor 2CF lung diseaseNumber of monocytesSpecific therapeutic agentsGrowth factor βCF transmembrane conductance regulatorLung hyperinflammationLung neutrophiliaNeutrophilic inflammationNeutrophil inflammationInflammation contributesLung damageNeutrophil recruitmentLung diseaseLung tissueReceptor 2Therapeutic targetNon-Modulator Therapies Developing a Therapy for Every Cystic Fibrosis Patient
Egan M. Non-Modulator Therapies Developing a Therapy for Every Cystic Fibrosis Patient. Clinics In Chest Medicine 2022, 43: 717-725. PMID: 36344076, DOI: 10.1016/j.ccm.2022.06.011.Peer-Reviewed Original ResearchConceptsModulator therapyCystic fibrosisCystic fibrosis transmembrane conductance regulator (CFTR) modulator therapiesCFTR modulator therapyTreatment of CFCystic fibrosis patientsGenetic-based therapiesMost patientsCF patientsFibrosis patientsTherapyPremature termination codon mutationsTherapeutic agentsPatientsDNA therapyRNA therapyTermination codon mutationsCodon mutationIn vivo correction of cystic fibrosis mediated by PNA nanoparticles
Piotrowski-Daspit AS, Barone C, Lin CY, Deng Y, Wu D, Binns TC, Xu E, Ricciardi AS, Putman R, Garrison A, Nguyen R, Gupta A, Fan R, Glazer PM, Saltzman WM, Egan ME. In vivo correction of cystic fibrosis mediated by PNA nanoparticles. Science Advances 2022, 8: eabo0522. PMID: 36197984, PMCID: PMC9534507, DOI: 10.1126/sciadv.abo0522.Peer-Reviewed Original ResearchCystic fibrosisF508del miceIntravenous deliveryPrimary nasal epithelial cellsMultiple organ dysfunctionNasal epithelial cellsUssing chamber assaysOrgan dysfunctionF508del cystic fibrosisVivo treatmentGI tissuesCF transmembrane conductance regulator (CFTR) geneChamber assaySystemic deliveryEpithelial cellsCF-causing mutationsFibrosisCFTR functionMiceTransmembrane conductance regulator geneTarget effectsAir-liquid interfaceDeliveryPartial gainViable optionRecruitment of monocytes primed to express heme oxygenase-1 ameliorates pathological lung inflammation in cystic fibrosis
Di Pietro C, Öz HH, Zhang PX, Cheng EC, Martis V, Bonfield TL, Kelley TJ, Jubin R, Abuchowski A, Krause DS, Egan ME, Murray TS, Bruscia EM. Recruitment of monocytes primed to express heme oxygenase-1 ameliorates pathological lung inflammation in cystic fibrosis. Experimental & Molecular Medicine 2022, 54: 639-652. PMID: 35581352, PMCID: PMC9166813, DOI: 10.1038/s12276-022-00770-8.Peer-Reviewed Original ResearchConceptsHeme oxygenase-1Cystic fibrosisOxygenase-1Myeloid differentiation factor 88Neutrophilic pulmonary inflammationChronic airway infectionDifferentiation factor 88HO-1 levelsDisease mouse modelPseudomonas aeruginosaRecruitment of monocytesResolution of inflammationMonocytes/macrophagesTreatment of CFConditional knockout miceMechanism of actionLung neutrophiliaNeutrophilic inflammationLung inflammationAirway infectionPulmonary diseasePulmonary inflammationFactor 88Lung damageProinflammatory cytokinesSurface conjugation of antibodies improves nanoparticle uptake in bronchial epithelial cells
Luks VL, Mandl H, DiRito J, Barone C, Freedman-Weiss MR, Ricciardi AS, Tietjen GG, Egan ME, Saltzman WM, Stitelman DH. Surface conjugation of antibodies improves nanoparticle uptake in bronchial epithelial cells. PLOS ONE 2022, 17: e0266218. PMID: 35385514, PMCID: PMC8986008, DOI: 10.1371/journal.pone.0266218.Peer-Reviewed Original ResearchConceptsTarget-specific antibodiesNanoparticle uptakeSurface conjugationNanoparticle surface modificationSurface of nanoparticlesCellular uptakeSite-specific geneSpecific cellular bindingNanoparticlesIntracellular deliveryEditing reagentsBronchial epithelial cellsSurface modificationCellular targetingCystic fibrosisTherapeutic agentsEpithelial cellsParticle uptakeFeasible strategyGenetic diseasesFirst demonstrationHuman bronchial epithelial cellsKinetics of antibodiesCellular bindingAppropriate antibodies
2021
SPLUNC1: a novel marker of cystic fibrosis exacerbations
Khanal S, Webster M, Niu N, Zielonka J, Nunez M, Chupp G, Slade MD, Cohn L, Sauler M, Gomez JL, Tarran R, Sharma L, Dela Cruz CS, Egan M, Laguna T, Britto CJ. SPLUNC1: a novel marker of cystic fibrosis exacerbations. European Respiratory Journal 2021, 58: 2000507. PMID: 33958427, PMCID: PMC8571118, DOI: 10.1183/13993003.00507-2020.Peer-Reviewed Original ResearchConceptsAcute pulmonary exacerbationsSPLUNC1 levelsCystic fibrosisClinical outcomesCF participantsLong-term disease controlNasal epithelium clone 1Cystic fibrosis exacerbationsHigher AE riskLung function declineCytokines interleukin-1βTumor necrosis factorAE riskClinical worseningPulmonary exacerbationsStable patientsLung functionAirway clearanceFunction declineSputum collectionAcute inflammationInflammatory cytokinesMicrobiology findingsCF careClinical managementNanoparticles for delivery of agents to fetal lungs
Ullrich SJ, Freedman-Weiss M, Ahle S, Mandl HK, Piotrowski-Daspit AS, Roberts K, Yung N, Maassel N, Bauer-Pisani T, Ricciardi AS, Egan ME, Glazer PM, Saltzman WM, Stitelman DH. Nanoparticles for delivery of agents to fetal lungs. Acta Biomaterialia 2021, 123: 346-353. PMID: 33484911, PMCID: PMC7962939, DOI: 10.1016/j.actbio.2021.01.024.Peer-Reviewed Original ResearchConceptsFetal lungCellular uptakeIntra-amniotic routeRoute of deliveryCongenital lung diseaseDelivery of agentsIntra-amniotic deliveryRelative cellular uptakeNanoparticlesFetal treatmentDiaphragmatic herniaLung diseaseFetal therapyLung tissueFetal miceIntravenous deliveryCystic fibrosisLungLung therapyInterventional technologiesTherapeutic agentsEndothelial cellsCell populationsEffective targetingTherapy
2020
Single-Cell Transcriptional Archetypes of Airway Inflammation in Cystic Fibrosis.
Schupp JC, Khanal S, Gomez JL, Sauler M, Adams TS, Chupp GL, Yan X, Poli S, Zhao Y, Montgomery RR, Rosas IO, Dela Cruz CS, Bruscia EM, Egan ME, Kaminski N, Britto CJ. Single-Cell Transcriptional Archetypes of Airway Inflammation in Cystic Fibrosis. American Journal Of Respiratory And Critical Care Medicine 2020, 202: 1419-1429. PMID: 32603604, PMCID: PMC7667912, DOI: 10.1164/rccm.202004-0991oc.Peer-Reviewed Original ResearchConceptsCF lung diseaseHealthy control subjectsImmune dysfunctionLung diseaseCystic fibrosisControl subjectsSputum cellsAbnormal chloride transportLung mononuclear phagocytesInnate immune dysfunctionDivergent clinical coursesImmune cell repertoireMonocyte-derived macrophagesCF monocytesAirway inflammationClinical courseProinflammatory featuresCell survival programInflammatory responseTissue injuryCell repertoireImmune functionTranscriptional profilesAlveolar macrophagesMononuclear phagocytesCystic fibrosis transmembrane conductance receptor modulator therapy in cystic fibrosis, an update.
Egan ME. Cystic fibrosis transmembrane conductance receptor modulator therapy in cystic fibrosis, an update. Current Opinion In Pediatrics 2020, 32: 384-388. PMID: 32374578, DOI: 10.1097/mop.0000000000000892.Peer-Reviewed Original ResearchConceptsModulator therapyCystic fibrosisCFTR modulatorsLung functionElexacaftor/tezacaftor/ivacaftorEffective CFTR modulatorsEffective triple therapyTezacaftor/ivacaftorMonths of ageQuality of lifeCystic fibrosis patientsLong-term usePulmonary exacerbationsTriple therapyFirst therapyLong-term benefitsReceptor modulatorsFibrosisFibrosis patientsTherapyUnderlying causeWeight gainPatientsImproved healthCFTR mutationsGlobal chemical effects of the microbiome include new bile-acid conjugations
Quinn RA, Melnik AV, Vrbanac A, Fu T, Patras KA, Christy MP, Bodai Z, Belda-Ferre P, Tripathi A, Chung LK, Downes M, Welch RD, Quinn M, Humphrey G, Panitchpakdi M, Weldon KC, Aksenov A, da Silva R, Avila-Pacheco J, Clish C, Bae S, Mallick H, Franzosa EA, Lloyd-Price J, Bussell R, Thron T, Nelson AT, Wang M, Leszczynski E, Vargas F, Gauglitz JM, Meehan MJ, Gentry E, Arthur TD, Komor AC, Poulsen O, Boland BS, Chang JT, Sandborn WJ, Lim M, Garg N, Lumeng JC, Xavier RJ, Kazmierczak BI, Jain R, Egan M, Rhee KE, Ferguson D, Raffatellu M, Vlamakis H, Haddad GG, Siegel D, Huttenhower C, Mazmanian SK, Evans RM, Nizet V, Knight R, Dorrestein PC. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 2020, 579: 123-129. PMID: 32103176, PMCID: PMC7252668, DOI: 10.1038/s41586-020-2047-9.Peer-Reviewed Original ResearchConceptsChemical interactionChemistryBile acid synthesis genesChemical effectsInflammatory bowel diseaseBile acid conjugatesCompoundsHost bile acidsMolecular familiesBile acid conjugationBowel diseaseGut diseasesMicrobiome dysbiosisConjugationAcidFree miceAmino acid conjugationBile acidsCystic fibrosisX receptorAcid conjugationReduced expressionFurther studiesDiseaseMice
2016
Increased susceptibility of Cftr−/− mice to LPS-induced lung remodeling
Bruscia E, Zhang P, Barone C, Scholte BJ, Homer R, Krause D, Egan ME. Increased susceptibility of Cftr−/− mice to LPS-induced lung remodeling. American Journal Of Physiology - Lung Cellular And Molecular Physiology 2016, 310: l711-l719. PMID: 26851259, PMCID: PMC4836110, DOI: 10.1152/ajplung.00284.2015.Peer-Reviewed Original ResearchConceptsLung pathologyCF miceImmune responseWT miceChronic inflammationCystic fibrosisAbnormal immune responseChronic pulmonary infectionPersistent immune responseWild-type littermatesCF mouse modelsPseudomonas aeruginosa lipopolysaccharideCF lung pathologyPulmonary infectionChronic administrationLPS exposurePersistent inflammationLung remodelingWT littermatesLung tissueOverall pathologyMouse modelInflammationChronic exposureBacterial products
2015
Genetics of Cystic Fibrosis Clinical Implications
Egan ME. Genetics of Cystic Fibrosis Clinical Implications. Clinics In Chest Medicine 2015, 37: 9-16. PMID: 26857764, DOI: 10.1016/j.ccm.2015.11.002.Peer-Reviewed Original ResearchConceptsCystic fibrosis transmembrane conductance regulator (CFTR) proteinMutant cystic fibrosis transmembrane conductance regulator (CFTR) proteinRegulator proteinMutational classesModifier genesFunctional consequencesCFTR functionCFTR geneRecessive genetic disorderRespiratory phenotypeGenesSpecific CF genotypesAutosomal recessive genetic disorderGenetic disordersCFTR genotypeCystic fibrosisGenotypesGeneticsProteinCF genotypeMutationsPhenotypeNew therapiesVariantsNanoparticles that deliver triplex-forming peptide nucleic acid molecules correct F508del CFTR in airway epithelium
McNeer NA, Anandalingam K, Fields RJ, Caputo C, Kopic S, Gupta A, Quijano E, Polikoff L, Kong Y, Bahal R, Geibel JP, Glazer PM, Saltzman WM, Egan ME. Nanoparticles that deliver triplex-forming peptide nucleic acid molecules correct F508del CFTR in airway epithelium. Nature Communications 2015, 6: 6952. PMID: 25914116, PMCID: PMC4480796, DOI: 10.1038/ncomms7952.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell LineChloridesCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorDNA-Binding ProteinsGenetic TherapyHigh-Throughput Nucleotide SequencingHumansLactic AcidMice, Inbred C57BLNanoparticlesPeptide Nucleic AcidsPolyglycolic AcidPolylactic Acid-Polyglycolic Acid CopolymerPolymersRespiratory MucosaConceptsFacile genome engineeringVivo gene deliveryBiodegradable polymer nanoparticlesTransient gene expressionNanoparticle systemsGene deliveryPolymer nanoparticlesGene correctionGenome engineeringNanoparticlesOff-target effectsPeptide nucleic acidLethal genetic disorderNucleic acidsDonor DNATarget effectsIntranasal deliveryDeliveryCystic fibrosisEngineeringOligonucleotideChloride effluxHuman cellsAirway epitheliumLung tissueAssociation between serum 25‐hydroxyvitamin D level and pulmonary exacerbations in cystic fibrosis
Vanstone MB, Egan ME, Zhang JH, Carpenter TO. Association between serum 25‐hydroxyvitamin D level and pulmonary exacerbations in cystic fibrosis. Pediatric Pulmonology 2015, 50: 441-446. PMID: 25657016, DOI: 10.1002/ppul.23161.Peer-Reviewed Original ResearchConceptsPulmonary function testsCystic fibrosisPulmonary exacerbationsPediatric patientsD levelsYale-New Haven HospitalPediatric CF patientsVitamin D sufficiencyRetrospective chart reviewVitamin D statusStrongest independent determinantCF care centersPatients ages 5Logistic regression analysisAnnual numberD sufficiencyD statusChart reviewClinic visitsLung functionPulmonary functionAntibiotic therapyFunction testsHospitalization ratesIndependent determinants