2006
Axonal conduction and injury in multiple sclerosis: the role of sodium channels
Waxman SG. Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nature Reviews Neuroscience 2006, 7: 932-941. PMID: 17115075, DOI: 10.1038/nrn2023.Peer-Reviewed Original ResearchConceptsAxonal degenerationSodium channelsChannel isoformsDistinct pathophysiological rolesKey PointsMultiple sclerosisMultiple neurological deficitsRelapsing-remitting courseRestoration of conductionDegeneration of axonsCerebellar Purkinje neuronsVoltage-gated sodium channelsContext of demyelinationNeurological deficitsProgressive courseMultiple sclerosisAxonal conductionDisease progressionNav1.8 channelsConduction failurePathophysiological rolePurkinje neuronsCNS axonsFiring patternsLoss of coordinationAberrant expression
1997
Immunolocalization of the Na+–Ca2+ exchanger in mammalian myelinated axons
Steffensen I, Waxman S, Mills L, Stys P. Immunolocalization of the Na+–Ca2+ exchanger in mammalian myelinated axons. Brain Research 1997, 776: 1-9. PMID: 9439790, DOI: 10.1016/s0006-8993(97)00868-8.Peer-Reviewed Original ResearchConceptsOptic nerveSpinal cordDorsal root axonsSciatic nerve sectionRat optic nerveCentral myelinated axonsCardiac type IFiner processesSimilar staining patternNerve sectionDorsal columnsSciatic nerveFrozen cryostat sectionsAnoxic injuryAxonal profilesImmunofluorescence labeling techniqueMyelinated axonsCell bodiesCryostat sectionsImportant mediatorAxonal localizationMammalian axonsNerveAxonsStaining pattern
1994
Activity‐dependent modulation of excitability: Implications for axonal physiology and pathophysiology
Stys P, Waxman S. Activity‐dependent modulation of excitability: Implications for axonal physiology and pathophysiology. Muscle & Nerve 1994, 17: 969-974. PMID: 7520532, DOI: 10.1002/mus.880170902.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsElectrophysiologyHumansIon ChannelsNerve FibersNerve Fibers, MyelinatedNeural ConductionAnoxic injury of rat optic nerve: ultrastructural evidence for coupling between Na+ influx and Ca2+-mediated injury in myelinated CNS axons
Waxman S, Black J, Ransom B, Stys P. Anoxic injury of rat optic nerve: ultrastructural evidence for coupling between Na+ influx and Ca2+-mediated injury in myelinated CNS axons. Brain Research 1994, 644: 197-204. PMID: 8050031, DOI: 10.1016/0006-8993(94)91680-2.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsCalciumCytoskeletonHypoxia, BrainMicroscopy, ElectronNerve Fibers, MyelinatedOptic NerveRanvier's NodesRatsSodium ChannelsTetrodotoxinConceptsOptic nerveOptic nerve axonsRat optic nerveNerve axonsBrain slice chamberCompound action potentialLoss of cristaeMicroM tetrodotoxinAnoxic injuryNormoxic controlsNerveAstrocyte processesPerinodal astrocyte processesWhite matterMyelinated axonsAstrocytic processesCNS axonsTetrodotoxinAction potentialsSlice chamberAxonsLoss of microtubulesCytoskeletal damageInjuryNormoxic conditions
1993
Protection of the axonal cytoskeleton in anoxic optic nerve by decreased extracellular calcium
Waxman S, Black J, Ransom B, Stys P. Protection of the axonal cytoskeleton in anoxic optic nerve by decreased extracellular calcium. Brain Research 1993, 614: 137-145. PMID: 8348309, DOI: 10.1016/0006-8993(93)91027-p.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsCalciumCytoskeletonHypoxia, BrainIn Vitro TechniquesIntermediate FilamentsMicrotubulesNerve Fibers, MyelinatedOptic NervePerfusionRanvier's NodesRatsConceptsArtificial cerebrospinal fluidMin of anoxiaOptic nerveZero-Ca2White matterAnoxic injuryCNS white matter tractAxonal cytoskeletonOptic nerve axonsCNS white matterRat optic nerveInflux of Ca2White matter tractsLoss of cristaeDisorganization of cristaeMembranous profilesUltrastructure of axonsAbnormal influxCerebrospinal fluidExtracellular calciumNerveMyelinated axonsNerve axonsNormal Ca2Axons
1990
Ion channel organization of the myelinated fiber
Black J, Kocsis J, Waxman S. Ion channel organization of the myelinated fiber. Trends In Neurosciences 1990, 13: 48-54. PMID: 1690930, DOI: 10.1016/0166-2236(90)90068-l.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsNerve Fibers, MyelinatedNeural ConductionPotassium ChannelsSodium Channels
1988
Unmyelinated and myelinated axon membrane from rat corpus callosum: differences in macromolecular structure
Waxman S, Black J. Unmyelinated and myelinated axon membrane from rat corpus callosum: differences in macromolecular structure. Brain Research 1988, 453: 337-343. PMID: 3401771, DOI: 10.1016/0006-8993(88)90174-6.Peer-Reviewed Original ResearchAnimalsAxonsCell MembraneCorpus CallosumFreeze FracturingMicroscopy, ElectronNerve Fibers, MyelinatedRatsRegional membrane heterogeneity in premyelinated CNS axons: factors influencing the binding of sterol-specific probes
Fields R, Waxman S. Regional membrane heterogeneity in premyelinated CNS axons: factors influencing the binding of sterol-specific probes. Brain Research 1988, 443: 231-242. PMID: 3359268, DOI: 10.1016/0006-8993(88)91617-4.Peer-Reviewed Original Research
1987
Physiological effects of 4‐aminopyridine on demyelinated mammalian motor and sensory fibers
Bowe C, Kocsis J, Targ E, Waxman S. Physiological effects of 4‐aminopyridine on demyelinated mammalian motor and sensory fibers. Annals Of Neurology 1987, 22: 264-268. PMID: 2821876, DOI: 10.1002/ana.410220212.Peer-Reviewed Original ResearchMeSH Keywords4-AminopyridineAction PotentialsAminopyridinesAnimalsAxonsFemaleLysophosphatidylcholinesMotor ActivityMyelin SheathNerve Fibers, MyelinatedRatsSensationSpinal Nerve RootsConceptsSensory fibersClinical trialsAction potentialsPotassium channel blockadeDorsal root axonsCompound action potentialDorsal spinal rootsSingle action potentialMammalian motorIntrathecal injectionMultiple sclerosisSensory dysfunctionVentral rootsSpinal rootsNeuromuscular disordersSpecific fiber typesElectrophysiological responsesSingle stimulusPhysiological effectsTrialsFiber typesResponseParesthesiaSclerosisDysfunctionMolecular neurobiology of the myelinated nerve fiber: ion-channel distributions and their implications for demyelinating diseases.
Waxman S. Molecular neurobiology of the myelinated nerve fiber: ion-channel distributions and their implications for demyelinating diseases. Proceedings Of The Association For Research In Nervous And Mental Disease 1987, 65: 7-37. PMID: 2455313.Peer-Reviewed Original Research
1986
A quantitative study of developing axons and glia following altered gliogenesis in rat optic nerve
Black J, Waxman S, Ransom B, Feliciano M. A quantitative study of developing axons and glia following altered gliogenesis in rat optic nerve. Brain Research 1986, 380: 122-135. PMID: 2428420, DOI: 10.1016/0006-8993(86)91436-8.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAnimalsAxonsAzacitidineCell CountCell DivisionMicroscopy, ElectronNerve Fibers, MyelinatedNeurogliaOptic NerveRatsRats, Inbred StrainsConceptsRat optic nerveOptic nerve volumeNormal optic nervesOptic nerveNerve volumeTotal glial cellsNerve cross sectionsGlial cellsMyelinated fibersAxonal diameterAge-matched control tissueNeonatal rat optic nerveOptic nerve cross sectionsConcomitant marked reductionProgenitor cellsNumber of oligodendrogliaAge-matched controlsGlial cell developmentDays of ageEnsheathed axonsSystemic injectionNerveAstrocytic lineageControl tissuesGlia
1985
Generation of electromotor neurons in Sternarchus albifrons: Differences between normally growing and regenerating spinal cord
Waxman S, Anderson M. Generation of electromotor neurons in Sternarchus albifrons: Differences between normally growing and regenerating spinal cord. Developmental Biology 1985, 112: 338-344. PMID: 4076546, DOI: 10.1016/0012-1606(85)90404-x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell CountCell SurvivalFishesMotor NeuronsNerve Fibers, MyelinatedNerve RegenerationSpinal CordAxo-glial relations in the retina-optic nerve junction of the adult rat: electron-microscopic observations
Hildebrand C, Remahl S, Waxman S. Axo-glial relations in the retina-optic nerve junction of the adult rat: electron-microscopic observations. Brain Cell Biology 1985, 14: 597-617. PMID: 4067610, DOI: 10.1007/bf01200800.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsCell CountMicroscopy, ElectronMyelin SheathNerve Fibers, MyelinatedNeurogliaOptic NerveRatsRats, Inbred StrainsRetinaRetinal Ganglion CellsConceptsNerve junctionAdult ratsAstrocytic processesDeficient blood-brain barrierEctopic Schwann cellsFibrous astrocytic processesBlood-brain barrierAxo-glial contactsMyelination of axonsNumerous pinocytotic vesiclesTypical oligodendrocytesGlial ensheathmentGlial cellsUnmyelinated segmentsGlia limitansSchwann cellsUnmyelinated axonsWide perivascular spacesPia materPerivascular spacesOligodendroglial cellsDeficient proliferationUnmyelinated partMyelin sheathSame axonOrganization of Ion Channels in the Myelinated Nerve Fiber
Waxman S, Ritchie J. Organization of Ion Channels in the Myelinated Nerve Fiber. Science 1985, 228: 1502-1507. PMID: 2409596, DOI: 10.1126/science.2409596.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsCell MembraneFreeze FracturingIon ChannelsMicroscopy, ElectronNerve Fibers, MyelinatedNeurogliaPotassiumRabbitsRanvier's NodesRegenerationSodiumMembrane ultrastructure of developing axons in glial cell deficient rat spinal cord
Black J, Sims T, Waxman S, Gilmore S. Membrane ultrastructure of developing axons in glial cell deficient rat spinal cord. Brain Cell Biology 1985, 14: 79-104. PMID: 4009213, DOI: 10.1007/bf01150264.Peer-Reviewed Original ResearchMeSH KeywordsAgingAnimalsAxonsCell CommunicationFreeze FracturingLumbosacral RegionNerve Fibers, MyelinatedNeurogliaRatsRats, Inbred StrainsSpinal Cord
1984
Postnatal differentiation of rat optic nerve fibers: Electron microscopic observations on the development of nodes of Ranvier and axoglial relations
Hildebrand C, Waxman S. Postnatal differentiation of rat optic nerve fibers: Electron microscopic observations on the development of nodes of Ranvier and axoglial relations. The Journal Of Comparative Neurology 1984, 224: 25-37. PMID: 6715578, DOI: 10.1002/cne.902240103.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornAstrocytesAxonsCell DifferentiationFemaleMaleMicroscopy, ElectronMyelin SheathNerve Fibers, MyelinatedNeurogliaOptic NerveRanvier's NodesRatsConceptsRat optic nerve fibersOptic nerve fibersNerve fibersUnmyelinated optic nerve axonsPostnatal differentiationOptic nerve axonsPerinodal astrocytic processesAxoglial signallingNodes of RanvierVesiculotubular profilesOptic nerveRat pupsCompact myelin sheathAxolemmal undercoatingAstrocytic processesNerve axonsAxonal diameterMyelin sheathAxon segmentsAxonsAxolemmaRanvierDaysElectron microscopic observationsFunctional differentiation
1983
Long-term regenerated nerve fibres retain sensitivity to potassium channel blocking agents
Kocsis J, Waxman S. Long-term regenerated nerve fibres retain sensitivity to potassium channel blocking agents. Nature 1983, 304: 640-642. PMID: 6308475, DOI: 10.1038/304640a0.Peer-Reviewed Original ResearchMeSH Keywords4-AminopyridineAction PotentialsAminopyridinesAnimalsCell DifferentiationIon ChannelsMiceNerve Fibers, MyelinatedNerve RegenerationConceptsNerve fibersPotassium channelsMyelinated peripheral nerve fibresAxon segmentsPeripheral nerve fibersAxon sproutsEndoneurial tubesNerve crushFunctional recoveryFunctional organizationMyelinated fibersAxon cylindersSchwann cellsBurst activityMyelinated axonsMammalian axonsAxonsPeripheral connectionsMembrane depolarizationBasement membraneK channelsRegenerated fibersAxon maturationMaturation of mammalian myelinated fibers: changes in action-potential characteristics following 4-aminopyridine application
Kocsis J, Ruiz J, Waxman S. Maturation of mammalian myelinated fibers: changes in action-potential characteristics following 4-aminopyridine application. Journal Of Neurophysiology 1983, 50: 449-463. PMID: 6310062, DOI: 10.1152/jn.1983.50.2.449.Peer-Reviewed Original Research
1982
Membranes, Myelin, and the Pathophysiology of Multiple Sclerosis
Waxman S. Membranes, Myelin, and the Pathophysiology of Multiple Sclerosis. New England Journal Of Medicine 1982, 306: 1529-1533. PMID: 7043271, DOI: 10.1056/nejm198206243062505.Peer-Reviewed Original ResearchConduction of trains of impulses in uniform myelinated fibers: Computed dependence on stimulus frequency
Wood S, Waxman S, Kocsis J. Conduction of trains of impulses in uniform myelinated fibers: Computed dependence on stimulus frequency. Neuroscience 1982, 7: 423-430. PMID: 7078731, DOI: 10.1016/0306-4522(82)90276-7.Peer-Reviewed Original Research