2024
Disordered but effective: short linear motifs as gene therapy targets for hyperexcitability disorders
Dib-Hajj S, Waxman S. Disordered but effective: short linear motifs as gene therapy targets for hyperexcitability disorders. Journal Of Clinical Investigation 2024, 134: e182198. PMID: 38949022, PMCID: PMC11213459, DOI: 10.1172/jci182198.Peer-Reviewed Original ResearchConceptsTetrodotoxin-sensitiveHyperexcitability disordersSensory neuronsExcitability of sensory neuronsGene therapy modalitiesPeripheral sensory neuronsVoltage-gated sodiumMinimal side effectsGene therapyInduce analgesiaTherapy modalitiesSide effectsTherapeutic strategiesNav channelsAttenuating excitationIn vivoHyperexcitabilityAnalgesiaNeuronsDisordersPainTherapyGenesBiodistributionRatsCompartment-specific regulation of NaV1.7 in sensory neurons after acute exposure to TNF-α
Tyagi S, Higerd-Rusli G, Ghovanloo M, Dib-Hajj F, Zhao P, Liu S, Kim D, Shim J, Park K, Waxman S, Choi J, Dib-Hajj S. Compartment-specific regulation of NaV1.7 in sensory neurons after acute exposure to TNF-α. Cell Reports 2024, 43: 113685. PMID: 38261513, PMCID: PMC10947185, DOI: 10.1016/j.celrep.2024.113685.Peer-Reviewed Original ResearchTNF-aSensory neuronsEffect of TNF-aSensory neuron excitabilityTumor necrosis factor-aRegulation of NaV1.7Voltage-gated sodiumPro-inflammatory cytokinesCompartment-specific effectsNeuronal plasma membraneSensitize nociceptorsNeuronal excitabilitySomatic membraneChannel N terminusElectrophysiological recordingsP38 MAPKIon channelsFactor AAcute exposureMolecular determinantsNeuronsAxonal endingsPhospho-acceptor sitesPlasma membraneCompartment-specific regulation
2023
Sodium currents in naïve mouse dorsal root ganglion neurons: No major differences between sexes
Ghovanloo M, Tyagi S, Zhao P, Effraim P, Dib-Hajj S, Waxman S. Sodium currents in naïve mouse dorsal root ganglion neurons: No major differences between sexes. Channels 2023, 18: 2289256. PMID: 38055732, PMCID: PMC10761158, DOI: 10.1080/19336950.2023.2289256.Peer-Reviewed Original ResearchConceptsSexual dimorphismRodent dorsal root ganglion neuronsBiophysical propertiesDorsal root ganglion neuronsExpression patternsSex-dependent regulationVoltage-gated sodiumFunctional analysisGanglion neuronsRodent sensory neuronsMouse dorsal root ganglion neuronsNaïve WT miceNumber of cellsMixed populationDimorphismUniform experimental conditionsSex-dependent differencesSensory neuronsNative DRG neuronsPain pathwaysDRG neuronsWT miceClinical studiesNav currentsAdult malesPain-causing stinging nettle toxins target TMEM233 to modulate NaV1.7 function
Jami S, Deuis J, Klasfauseweh T, Cheng X, Kurdyukov S, Chung F, Okorokov A, Li S, Zhang J, Cristofori-Armstrong B, Israel M, Ju R, Robinson S, Zhao P, Ragnarsson L, Andersson Å, Tran P, Schendel V, McMahon K, Tran H, Chin Y, Zhu Y, Liu J, Crawford T, Purushothamvasan S, Habib A, Andersson D, Rash L, Wood J, Zhao J, Stehbens S, Mobli M, Leffler A, Jiang D, Cox J, Waxman S, Dib-Hajj S, Neely G, Durek T, Vetter I. Pain-causing stinging nettle toxins target TMEM233 to modulate NaV1.7 function. Nature Communications 2023, 14: 2442. PMID: 37117223, PMCID: PMC10147923, DOI: 10.1038/s41467-023-37963-2.Peer-Reviewed Original ResearchConceptsSensory neuronsVoltage-sensing domainNav channelsTransmembrane proteinAccessory proteinsVoltage-gated sodium channelsCritical regulatorPore domainChannel gatingExtracellular loopToxin-mediated effectsNeuronal excitabilityPeptide toxinsProteinSodium channelsPharmacological activitiesNav1.7 functionKnottin peptidesNeuronsImportant insightsToxinSubunitsRegulatorDomainExcelsaPaclitaxel effects on axonal localization and vesicular trafficking of NaV1.8
Baker C, Tyagi S, Higerd-Rusli G, Liu S, Zhao P, Dib-Hajj F, Waxman S, Dib-Hajj S. Paclitaxel effects on axonal localization and vesicular trafficking of NaV1.8. Frontiers In Molecular Neuroscience 2023, 16: 1130123. PMID: 36860665, PMCID: PMC9970094, DOI: 10.3389/fnmol.2023.1130123.Peer-Reviewed Original ResearchChemotherapy-induced peripheral neuropathyDorsal root gangliaPTX treatmentDRG axonsEffect of paclitaxelVoltage-gated sodium channel NaPain syndromePeripheral neuropathyDRG neuronsSodium channel NaRoot gangliaCell cycle arrestNeuronal somataSensory neuronsSide effectsTherapeutic targetingTumor growthPaclitaxel effectAntineoplastic agentsAxonal localizationPaclitaxelNumber of NaAxonal compartmentAxonsChannel NaGene therapy for chronic pain: emerging opportunities in target-rich peripheral nociceptors
Ovsepian S, Waxman S. Gene therapy for chronic pain: emerging opportunities in target-rich peripheral nociceptors. Nature Reviews Neuroscience 2023, 24: 252-265. PMID: 36658346, DOI: 10.1038/s41583-022-00673-7.Peer-Reviewed Original Research
2018
Pharmacological Reversal of a Pain Phenotype in iPSC-Derived Sensory Neurons and Patients with Inherited Erythromelalgia
Cao L, McDonnell A, Nitzsche A, Alexandrou A, Saintot P, Loucif A, Brown A, Young G, Mis M, Randall A, Waxman S, Stanley P, Kirby S, Tarabar S, Gutteridge A, Butt R, McKernan R, Whiting P, Ali Z, Bilsland J, Stevens E. Pharmacological Reversal of a Pain Phenotype in iPSC-Derived Sensory Neurons and Patients with Inherited Erythromelalgia. 2018, 225-246. DOI: 10.7551/mitpress/10310.003.0027.Peer-Reviewed Original Research
2016
Pharmacological reversal of a pain phenotype in iPSC-derived sensory neurons and patients with inherited erythromelalgia
Cao L, McDonnell A, Nitzsche A, Alexandrou A, Saintot PP, Loucif AJ, Brown AR, Young G, Mis M, Randall A, Waxman SG, Stanley P, Kirby S, Tarabar S, Gutteridge A, Butt R, McKernan RM, Whiting P, Ali Z, Bilsland J, Stevens EB. Pharmacological reversal of a pain phenotype in iPSC-derived sensory neurons and patients with inherited erythromelalgia. Science Translational Medicine 2016, 8: 335ra56. PMID: 27099175, DOI: 10.1126/scitranslmed.aad7653.Peer-Reviewed Original ResearchConceptsSensory neuronsPain conditionsSodium channelsClinical phenotypeSensory neuronal activityChronic pain conditionsHeat-induced painPeripheral nervous systemUnmet clinical needSodium channel Nav1.7Nav1.7 sodium channelNav1.7 blockersPharmacological reversalPain phenotypesExtreme painNeuronal activityHeat stimuliNervous systemChannel Nav1.7PainClinical needPatientsAberrant responsesSensory conditionsInduced pluripotent stem cell line
2012
The NaV1.7 sodium channel: from molecule to man
Dib-Hajj SD, Yang Y, Black JA, Waxman SG. The NaV1.7 sodium channel: from molecule to man. Nature Reviews Neuroscience 2012, 14: 49-62. PMID: 23232607, DOI: 10.1038/nrn3404.Peer-Reviewed Original ResearchConceptsDorsal hornPain disordersNerve endingsNociceptive dorsal root ganglion (DRG) neuronsPainful small fiber neuropathyDorsal root ganglion neuronsVoltage-gated sodium channel Nav1.7Small fiber neuropathyTreatment of painFree nerve endingsSecond-order neuronsSmall molecule blockersSodium channel Nav1.7Function mutationsOlfactory sensory neuronsProbability of neuronsNav1.7 sodium channelSuperficial laminaeGanglion neuronsRisk factorsSympathetic neuronsSlow depolarizationSpinal cordCardiac deficitsSensory neurons
2006
Transcriptional Channelopathies of the Nervous System
Waxman S. Transcriptional Channelopathies of the Nervous System. 2006 DOI: 10.1002/9780470015902.a0006086.Peer-Reviewed Original ResearchSodium channel geneChannel genesTranscriptional channelopathiesSodium channel gene expressionChannel gene expressionGene expressionPeripheral nerve injurySpinal sensory neuronsGenesDysregulated expressionNerve injuryMultiple sclerosisSensory neuronsNervous systemCerebellar functionRecent studiesExpressionChannelopathiesAbstract Recent studiesHyperexcitabilitySclerosisInjuryNeuronsCells
2003
Selective expression of a persistent Ttx-resistant Na+ current and Navl.9 subunit in myenteric sensory neurons
Rugiero F, Clerc N, Mistry M, Sage D, Black J, Waxman S, Crest M, Delmas P, Gola M. Selective expression of a persistent Ttx-resistant Na+ current and Navl.9 subunit in myenteric sensory neurons. Gastroenterology 2003, 124: a343. DOI: 10.1016/s0016-5085(03)81730-4.Peer-Reviewed Original Research
2002
Axotomy does not up-regulate expression of sodium channel Nav1.8 in Purkinje cells
Black J, Dusart I, Sotelo C, Waxman S. Axotomy does not up-regulate expression of sodium channel Nav1.8 in Purkinje cells. Brain Research 2002, 101: 126-131. PMID: 12007840, DOI: 10.1016/s0169-328x(02)00200-0.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsAxotomyCerebellumDisease Models, AnimalFemaleGanglia, SpinalGene Expression RegulationImmunohistochemistryMultiple SclerosisNAV1.8 Voltage-Gated Sodium ChannelNeurons, AfferentNeuropeptidesPurkinje CellsRatsRats, WistarRNA, MessengerSodium ChannelsUp-RegulationZebrafish ProteinsConceptsMultiple sclerosisPurkinje cellsSensory neuron-specific sodium channelsDorsal root ganglion neuronsAberrant expressionSodium channelsHuman multiple sclerosisPrimary sensory neuronsSodium channel Nav1.8Specific sodium channelsCerebellar Purkinje cellsGanglion neuronsSensory neuronsAxotomySurgical modelSodium channel transcriptsExperimental modelCerebellar functionChannel transcriptsNeuronsSitu hybridizationCellsExpressionNav1.8SclerosisSodium channels and the molecular basis for pain
Black J, Cummins T, Dib-Hajj S, Waxman S. Sodium channels and the molecular basis for pain. Progress In Inflammation Research 2002, 23-50. DOI: 10.1007/978-3-0348-8129-6_2.ChaptersPrimary sensory neuronsSensory neuronsAction potentialsSpontaneous action potentialsHigh-frequency activityInflammatory painTrigeminal neuronsNociceptive responsesAscending pathwaysPeripheral nervesTissue injuryNoxious stimuliPeripheral targetsPainNeuronsSodium channelsTemperature sensationBrainHigh thresholdNerveMolecular basisInjuryAxonsDRG
2001
Direct Interaction with Contactin Targets Voltage-gated Sodium Channel Nav1.9/NaN to the Cell Membrane*
Liu C, Dib-Hajj S, Black J, Greenwood J, Lian Z, Waxman S. Direct Interaction with Contactin Targets Voltage-gated Sodium Channel Nav1.9/NaN to the Cell Membrane*. Journal Of Biological Chemistry 2001, 276: 46553-46561. PMID: 11581273, DOI: 10.1074/jbc.m108699200.Peer-Reviewed Original ResearchConceptsDorsal root gangliaRoot gangliaSodium channelsSmall sensory neuronsVoltage-gated sodium channelsTrigeminal ganglionNerve endingsC-fibersSensory neuronsNeuron somataChinese hamster ovary cell lineDifferent physiological propertiesGangliaHamster ovary cell lineNeuronal membranesChinese hamster ovary cellsOvary cell lineProtein complexesSurface expressionHamster ovary cellsCell linesAxonsSurface localizationCell membraneOvary cellsTranscriptional channelopathies: An emerging class of disorders
Waxman S. Transcriptional channelopathies: An emerging class of disorders. Nature Reviews Neuroscience 2001, 2: 652-659. PMID: 11533733, DOI: 10.1038/35090026.Peer-Reviewed Original ResearchConceptsNerve injuryMultiple sclerosisSodium channel geneTranscriptional channelopathiesChannel transcriptionPeripheral nerve injurySpinal sensory neuronsChannel genesExperimental nerve injuryFamily of disordersAction potential conductionAutoimmune channelopathiesDemyelinated nervesNeuropathic painDemyelinating conditionMotor abnormalitiesNeurotrophic factorClass of disordersSensory neuronsCalcium channelsChannel expressionCerebellar ataxiaPurkinje cellsPotential conductionChannelopathiesAcquired channelopathies in nerve injury and MS
Waxman S. Acquired channelopathies in nerve injury and MS. Neurology 2001, 56: 1621-1627. PMID: 11428390, DOI: 10.1212/wnl.56.12.1621.Peer-Reviewed Original ResearchConceptsNerve injurySodium channelsSensory neuron-specific sodium channelsSodium channel geneChannel genesPeripheral nerve injurySpinal sensory neuronsPathophysiology of MSSubtype-specific drugsDistinct sodium channelsVoltage-gated sodium channelsSpecific sodium channelsAxonal transectionGenetic channelopathyPrototype disorderSensory neuronsPurkinje cellsTherapeutic opportunitiesChannelopathiesAbnormal expressionInjuryMolecular changesHyperexcitabilityCellsTransection
2000
Sodium channels and the molecular pathophysiology of pain
Cummins T, Dib-Hajj S, Black J, Waxman S. Sodium channels and the molecular pathophysiology of pain. Progress In Brain Research 2000, 129: 3-19. PMID: 11098678, DOI: 10.1016/s0079-6123(00)29002-x.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsDorsal root gangliaTrigeminal neuronsSodium channelsAction potentialsDorsal root ganglion neuronsSpontaneous action potential activityMolecular pathophysiologyPrimary sensory neuronsPeripheral target tissuesAction potential activitySodium channel expressionChain of neuronsPathological burstingNerve injuryNociceptive pathwaysChronic painGanglion neuronsRoot gangliaSensory neuronsChannel expressionSomatosensory systemPainNeuronsTarget tissuesPathophysiologyVoltage-gated sodium channels and the molecular pathogenesis of pain: a review.
Waxman SG, Cummins TR, Dib-Hajj SD, Black JA. Voltage-gated sodium channels and the molecular pathogenesis of pain: a review. The Journal Of Rehabilitation Research And Development 2000, 37: 517-28. PMID: 11322150.Peer-Reviewed Original ResearchConceptsVoltage-gated sodium channelsDRG neuronsNervous systemSodium channelsDistinct voltage-gated sodium channelsAction potentialsSpinal sensory neuronsSodium channel expressionSpontaneous action potentialsDifferent sodium channelsSpecific sodium channelsUnderstanding of painHigh-frequency activityInflammatory painPain pathwaysChronic painNociceptive signalsPeripheral nervesSensory neuronsNew therapiesPainChannel expressionMolecular pathogenesisPharmacologic manipulationNeuron cell membraneLocalization of the tetrodotoxin-resistant sodium channel NaN in nociceptors
Fjell J, Hjelmström P, Hormuzdiar W, Milenkovic M, Aglieco F, Tyrrell L, Dib-Hajj S, Waxman S, Black J. Localization of the tetrodotoxin-resistant sodium channel NaN in nociceptors. Neuroreport 2000, 11: 199-202. PMID: 10683857, DOI: 10.1097/00001756-200001170-00039.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAxonsCorneaFemaleGanglia, SpinalImage Processing, Computer-AssistedImmunohistochemistryMolecular Sequence DataMyelin SheathNAV1.9 Voltage-Gated Sodium ChannelNerve FibersNeurons, AfferentNeuropeptidesNociceptorsPresynaptic TerminalsRanvier's NodesRatsRats, Sprague-DawleySciatic NerveSodium ChannelsTetrodotoxinConceptsSciatic nerveSmall diameter primary sensory neuronsSodium currentTetrodotoxin-resistant sodium channelsTetrodotoxin-resistant sodium currentDorsal root ganglion neuronsSodium channelsPrimary sensory neuronsAxonal sodium currentsNodes of RanvierNociceptive transmissionChannel immunoreactivityGanglion neuronsUnmyelinated fibersAxon terminalsSensory neuronsNerveImmunoreactivityAxonsNeuronsSpecific peptidesNociceptorsIB4CorneaAntibodies
1999
Sodium channels, excitability of primary sensory neurons, and the molecular basis of pain
Waxman S, Cummins T, Dib‐Hajj S, Fjell J, Black J. Sodium channels, excitability of primary sensory neurons, and the molecular basis of pain. Muscle & Nerve 1999, 22: 1177-1187. PMID: 10454712, DOI: 10.1002/(sici)1097-4598(199909)22:9<1177::aid-mus3>3.0.co;2-p.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsPrimary sensory neuronsDRG neuronsSodium channel expressionSodium channel gene expressionSensory neuronsChannel gene expressionSodium channelsChannel expressionSodium currentTTX-sensitive sodium currentAbnormal burst activityNormal DRG neuronsSNS/PN3Resistant sodium currentsDistinct sodium channelsSodium channel geneChannel genesInflammatory painNerve injuryAxonal transectionElectrophysiological abnormalitiesSelective blockadePharmacological approachesBurst activityPain