2022
CD38 Mediates Lung Fibrosis by Promoting Alveolar Epithelial Cell Aging.
Cui H, Xie N, Banerjee S, Dey T, Liu RM, Antony VB, Sanders YY, Adams TS, Gomez JL, Thannickal VJ, Kaminski N, Liu G. CD38 Mediates Lung Fibrosis by Promoting Alveolar Epithelial Cell Aging. American Journal Of Respiratory And Critical Care Medicine 2022, 206: 459-475. PMID: 35687485, DOI: 10.1164/rccm.202109-2151oc.Peer-Reviewed Original ResearchMeSH KeywordsAgingAlveolar Epithelial CellsAnimalsBleomycinCellular SenescenceHumansIdiopathic Pulmonary FibrosisLungMiceNADConceptsIdiopathic pulmonary fibrosisLung fibrosisCD38 expressionAlveolar epithelial cell injuryEpithelial cell injuryEffective therapeutic strategyHuman lung parenchymaIPF lungsLung functionPulmonary fibrosisDisease progressionFibrotic lungsReal-time PCRYoung miceLung parenchymaOld miceCell injuryTherapeutic strategiesFibrosisPharmacological inactivationCD38Single-cell RNA sequencingFlow cytometryWestern blottingOld animalsCharacterization of the COPD alveolar niche using single-cell RNA sequencing
Sauler M, McDonough JE, Adams TS, Kothapalli N, Barnthaler T, Werder RB, Schupp JC, Nouws J, Robertson MJ, Coarfa C, Yang T, Chioccioli M, Omote N, Cosme C, Poli S, Ayaub EA, Chu SG, Jensen KH, Gomez JL, Britto CJ, Raredon MSB, Niklason LE, Wilson AA, Timshel PN, Kaminski N, Rosas IO. Characterization of the COPD alveolar niche using single-cell RNA sequencing. Nature Communications 2022, 13: 494. PMID: 35078977, PMCID: PMC8789871, DOI: 10.1038/s41467-022-28062-9.Peer-Reviewed Original ResearchConceptsSingle-cell RNA sequencingRNA sequencingCell-specific mechanismsChronic obstructive pulmonary diseaseAdvanced chronic obstructive pulmonary diseaseTranscriptomic network analysisSingle-cell RNA sequencing profilesCellular stress toleranceAberrant cellular metabolismStress toleranceRNA sequencing profilesTranscriptional evidenceCellular metabolismAlveolar nicheSequencing profilesHuman alveolar epithelial cellsChemokine signalingAlveolar epithelial type II cellsObstructive pulmonary diseaseSitu hybridizationType II cellsEpithelial type II cellsSequencingCOPD pathobiologyHuman lung tissue samples
2021
Chronic lung diseases are associated with gene expression programs favoring SARS-CoV-2 entry and severity
Bui LT, Winters NI, Chung MI, Joseph C, Gutierrez AJ, Habermann AC, Adams TS, Schupp JC, Poli S, Peter LM, Taylor CJ, Blackburn JB, Richmond BW, Nicholson AG, Rassl D, Wallace WA, Rosas IO, Jenkins RG, Kaminski N, Kropski JA, Banovich NE. Chronic lung diseases are associated with gene expression programs favoring SARS-CoV-2 entry and severity. Nature Communications 2021, 12: 4314. PMID: 34262047, PMCID: PMC8280215, DOI: 10.1038/s41467-021-24467-0.Peer-Reviewed Original ResearchConceptsChronic lung diseaseLung diseaseImmune responseSARS-CoV-2 entry factorsSevere coronavirus disease-19SARS-CoV-2 infectionWorse COVID-19 outcomesSARS-CoV-2 entryAdaptive immune responsesCoronavirus disease-19COVID-19 outcomesInnate immune responseInflammatory gene expression programSimilar cellular distributionPoor outcomePeripheral lungViral exposureDisease-19Inflammatory microenvironmentEntry factorsLung epitheliumLung cellsViral replicationAT2 cellsBasal differences
2020
Retrograde signaling by a mtDNA-encoded non-coding RNA preserves mitochondrial bioenergetics
Blumental-Perry A, Jobava R, Bederman I, Degar A, Kenche H, Guan B, Pandit K, Perry N, Molyneaux N, Wu J, Prendergas E, Ye Z, Zhang J, Nelson C, Ahangari F, Krokowski D, Guttentag S, Linden P, Townsend D, Miron A, Kang M, Kaminski N, Perry Y, Hatzoglou M. Retrograde signaling by a mtDNA-encoded non-coding RNA preserves mitochondrial bioenergetics. Communications Biology 2020, 3: 626. PMID: 33127975, PMCID: PMC7603330, DOI: 10.1038/s42003-020-01322-4.Peer-Reviewed Original ResearchConceptsMitochondrial genomeNuclear-encoded genesCell type-specific mannerNon-coding RNASteady-state transcriptionMitochondrial energy metabolismControl regionPositive regulationMitochondrial bioenergeticsMitochondria stressMitochondrial functionSpecific mannerAlveolar epithelial type II cellsEnergy metabolismType II cellsEpithelial type II cellsGenomePhysiological stressRNAII cellsCellsMouse lungTranscriptionGenesMitochondriaSARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues
Ziegler C, Allon S, Nyquist S, Mbano I, Miao V, Tzouanas C, Cao Y, Yousif A, Bals J, Hauser B, Feldman J, Muus C, Wadsworth M, Kazer S, Hughes T, Doran B, Gatter G, Vukovic M, Taliaferro F, Mead B, Guo Z, Wang J, Gras D, Plaisant M, Ansari M, Angelidis I, Adler H, Sucre J, Taylor C, Lin B, Waghray A, Mitsialis V, Dwyer D, Buchheit K, Boyce J, Barrett N, Laidlaw T, Carroll S, Colonna L, Tkachev V, Peterson C, Yu A, Zheng H, Gideon H, Winchell C, Lin P, Bingle C, Snapper S, Kropski J, Theis F, Schiller H, Zaragosi L, Barbry P, Leslie A, Kiem H, Flynn J, Fortune S, Berger B, Finberg R, Kean L, Garber M, Schmidt A, Lingwood D, Shalek A, Ordovas-Montanes J, Network H, Banovich N, Barbry P, Brazma A, Desai T, Duong T, Eickelberg O, Falk C, Farzan M, Glass I, Haniffa M, Horvath P, Hung D, Kaminski N, Krasnow M, Kropski J, Kuhnemund M, Lafyatis R, Lee H, Leroy S, Linnarson S, Lundeberg J, Meyer K, Misharin A, Nawijn M, Nikolic M, Ordovas-Montanes J, Pe’er D, Powell J, Quake S, Rajagopal J, Tata P, Rawlins E, Regev A, Reyfman P, Rojas M, Rosen O, Saeb-Parsy K, Samakovlis C, Schiller H, Schultze J, Seibold M, Shalek A, Shepherd D, Spence J, Spira A, Sun X, Teichmann S, Theis F, Tsankov A, van den Berge M, von Papen M, Whitsett J, Xavier R, Xu Y, Zaragosi L, Zhang K. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell 2020, 181: 1016-1035.e19. PMID: 32413319, PMCID: PMC7252096, DOI: 10.1016/j.cell.2020.04.035.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAlveolar Epithelial CellsAngiotensin-Converting Enzyme 2AnimalsBetacoronavirusCell LineCells, CulturedChildCoronavirus InfectionsCOVID-19EnterocytesGoblet CellsHIV InfectionsHumansInfluenza, HumanInterferon Type ILungMacaca mulattaMiceMycobacterium tuberculosisNasal MucosaPandemicsPeptidyl-Dipeptidase APneumonia, ViralReceptors, VirusSARS-CoV-2Serine EndopeptidasesSingle-Cell AnalysisTuberculosisUp-RegulationConceptsSARS-CoV-2Interferon-stimulated genesAirway epithelial cellsCell subsetsSingle-cell RNA sequencing datasetsRNA sequencing datasetsSARS-CoV-2 receptor ACE2Human interferon-stimulated genesTransmembrane serine protease 2Human airway epithelial cellsEpithelial cellsSevere acute respiratory syndrome coronavirus clade 2SARS-CoV-2 spike proteinType II pneumocytesSerine protease 2Clade 2Putative targetsNon-human primatesSpecific cell subsetsCo-expressing cellsDisease COVID-19ACE2 expressionLung injuryLung type II pneumocytesAbsorptive enterocytesReconstructed Single-Cell Fate Trajectories Define Lineage Plasticity Windows during Differentiation of Human PSC-Derived Distal Lung Progenitors
Hurley K, Ding J, Villacorta-Martin C, Herriges MJ, Jacob A, Vedaie M, Alysandratos KD, Sun YL, Lin C, Werder RB, Huang J, Wilson AA, Mithal A, Mostoslavsky G, Oglesby I, Caballero IS, Guttentag SH, Ahangari F, Kaminski N, Rodriguez-Fraticelli A, Camargo F, Bar-Joseph Z, Kotton DN. Reconstructed Single-Cell Fate Trajectories Define Lineage Plasticity Windows during Differentiation of Human PSC-Derived Distal Lung Progenitors. Cell Stem Cell 2020, 26: 593-608.e8. PMID: 32004478, PMCID: PMC7469703, DOI: 10.1016/j.stem.2019.12.009.Peer-Reviewed Original ResearchMeSH KeywordsAlveolar Epithelial CellsCell DifferentiationHumansLungPluripotent Stem CellsPulmonary AlveoliConceptsPluripotent stem cellsHuman pluripotent stem cellsLung progenitorsSingle-cell RNACell fate trajectoriesDistal lung progenitorsEndodermal fateLentiviral barcodingSelf-renewal capacityDevelopmental plasticityWnt responseNKX2-1Stem cellsStable phenotypeAlveolar epithelial type 2 cellsProgenitorsFacultative progenitorsPlasticity windowContinuous state Hidden Markov ModelsEpithelial type 2 cellsDifferentiationFateAEC2sType 2 cellsBarcoding
2014
Secreted Phosphoprotein 1 Is a Determinant of Lung Function Development in Mice
Ganguly K, Martin TM, Concel VJ, Upadhyay S, Bein K, Brant KA, George L, Mitra A, Thimraj TA, Fabisiak JP, Vuga LJ, Fattman C, Kaminski N, Schulz H, Leikauf GD. Secreted Phosphoprotein 1 Is a Determinant of Lung Function Development in Mice. American Journal Of Respiratory Cell And Molecular Biology 2014, 51: 637-651. PMID: 24816281, PMCID: PMC4224082, DOI: 10.1165/rcmb.2013-0471oc.Peer-Reviewed Original ResearchMeSH KeywordsAlveolar Epithelial CellsAnimalsAnimals, NewbornCore Binding Factor Alpha 1 SubunitFemaleGene Expression Regulation, DevelopmentalLung ComplianceMaleMice, Inbred C3HMice, Inbred C57BLMice, KnockoutOligonucleotide Array Sequence AnalysisOsteopontinPromoter Regions, GeneticPulmonary AlveoliPulmonary Disease, Chronic ObstructiveReceptor, Notch1ConceptsMicroarray analysisPhosphoprotein 1Quantitative trait lociLung functionQuantitative RT-PCR analysisDNA-protein bindingRunt-related transcription factor 2Transcription factor 2Developmental transcriptsLung developmentTrait lociNumerous genesSecreted Phosphoprotein 1Notch1 transcriptsRT-PCR analysisInsulin-like growth factor-1C3H/HeJ miceDiminished lung functionLung function developmentSPP1 promoterSPP1Growth factor-1Mean airspace chord lengthC3H/HeJGenetic variants