2006
Functional analysis of a novel potassium channel (KCNA1) mutation in hereditary myokymia
Chen H, von Hehn C, Kaczmarek LK, Ment LR, Pober BR, Hisama FM. Functional analysis of a novel potassium channel (KCNA1) mutation in hereditary myokymia. Neurogenetics 2006, 8: 131-135. PMID: 17136396, PMCID: PMC1820748, DOI: 10.1007/s10048-006-0071-z.Peer-Reviewed Original ResearchConceptsEpisodic ataxiaAdditional clinical featuresAbsence of epilepsyPotassium channel mutationsVoltage-gated potassium channelsPotassium channel gene KCNA1Febrile illnessCerebral palsyClinical featuresExtensor plantarsNonconservative missense mutationElectrophysiological studiesVermiform movementsKv1.1 subunitsLoss of functionMotor delayMyokymiaAutosomal dominant traitPotassium channelsChannel mutationsNovel c.AtaxiaMutation analysisMissense mutationsMutant cRNA
2003
Compensatory Anion Currents in Kv1.3 Channel-deficient Thymocytes*
Koni PA, Khanna R, Chang MC, Tang MD, Kaczmarek LK, Schlichter LC, Flavell R. Compensatory Anion Currents in Kv1.3 Channel-deficient Thymocytes*. Journal Of Biological Chemistry 2003, 278: 39443-39451. PMID: 12878608, DOI: 10.1074/jbc.m304879200.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisBase SequenceCell DivisionChloride ChannelsDNAFemaleGene ExpressionIon TransportKv1.3 Potassium ChannelLymphocyte ActivationMaleMembrane PotentialsMiceMice, Inbred C57BLMice, KnockoutPatch-Clamp TechniquesPotassium ChannelsPotassium Channels, Voltage-GatedRNA, MessengerT-LymphocytesConceptsWild-type cellsKv1.3-/- micePotassium channel subunitsVoltage-gated potassium channelsMouse thymocyte subsetsChloride currentsChannel subunitsAnion currentsT-cell activation/proliferationVoltage-dependent potassium currentsVolume regulationCell proliferationThymocyte apoptosisT cell responsesCell-mediated cytotoxicityObvious defectsCell activation/proliferationImmune system defectsT cell proliferationActivation/proliferationPotassium channelsLymph nodesCompensatory effectLymphocyte typeKv1.3
2001
Aplysia Ror Forms Clusters on the Surface of Identified Neuroendocrine Cells
McKay S, Hislop J, Scott D, Bulloch A, Kaczmarek L, Carew T, Sossin W. Aplysia Ror Forms Clusters on the Surface of Identified Neuroendocrine Cells. Molecular And Cellular Neuroscience 2001, 17: 821-841. PMID: 11358481, DOI: 10.1006/mcne.2001.0977.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAmino Acid SequenceAnimalsAntibody SpecificityAplysiaBase SequenceCaenorhabditis elegans ProteinsCell CompartmentationCells, CulturedCloning, MolecularGanglia, InvertebrateImmunohistochemistryMolecular Sequence DataNeuronsNeurosecretory SystemsReceptor Protein-Tyrosine KinasesReceptor Tyrosine Kinase-like Orphan ReceptorsReceptors, Cell SurfaceRNA, MessengerConceptsBag cell neuronsNeuroendocrine bag cell neuronsROR receptorsCultured bag cell neuronsRegulation of growthReceptor tyrosine kinasesMarine mollusk Aplysia californicaPeripheral neuronal processesMollusk Aplysia californicaCellular polarityFunctional domainsTyrosine kinaseIntracellular organellesCell surfaceProteinNeuroendocrine cellsKinaseAplysia californicaRelease sitesNeuronal processesOrganellesNeuronal populationsForm clustersGanglionic neuropilReceptors
1999
Cell Type‐Specific Expression of the Kv3.1 Gene Is Mediated by a Negative Element in the 5′ Untranslated Region of the Kv3.1 Promoter
Gan L, Hahn S, Kaczmarek L. Cell Type‐Specific Expression of the Kv3.1 Gene Is Mediated by a Negative Element in the 5′ Untranslated Region of the Kv3.1 Promoter. Journal Of Neurochemistry 1999, 73: 1350-1362. PMID: 10501178, DOI: 10.1046/j.1471-4159.1999.0731350.x.Peer-Reviewed Original ResearchMeSH Keywords3T3 Cells5' Untranslated RegionsAnimalsBase SequenceBeta-GalactosidaseBrainCell LineCHO CellsCloning, MolecularCricetinaeGene Expression RegulationGliomaHumansMiceMice, TransgenicMolecular Sequence DataNeuropeptidesOrgan SpecificityPC12 CellsPotassium ChannelsPotassium Channels, Voltage-GatedPromoter Regions, GeneticRatsRecombinant Fusion ProteinsRegulatory Sequences, Nucleic AcidRNA, MessengerShaw Potassium ChannelsTranscription, GeneticTransfectionConceptsType-specific expressionUntranslated regionCell type-specific enhancersCell type-specific expressionCell linesTissue-specific expressionThymidine kinase promoterCell-type specificityTransient transfection assaysKv3.1 potassium channel genePotassium channel genesKv3.1 geneDifferent tissue originsRegulatory fragmentDeletion analysisRegulatory regionsTranscriptional mechanismsTransgenic miceTransfection assaysKinase promoterFunctional analysisChannel genesType specificityPromoterGenes
1997
Identification of a Vesicular Pool of Calcium Channels in the Bag Cell Neurons of Aplysia californica
White B, Kaczmarek L. Identification of a Vesicular Pool of Calcium Channels in the Bag Cell Neurons of Aplysia californica. Journal Of Neuroscience 1997, 17: 1582-1595. PMID: 9030618, PMCID: PMC6573390, DOI: 10.1523/jneurosci.17-05-01582.1997.Peer-Reviewed Original ResearchConceptsBag cell neuronsCalcium channel alpha1 subunitAplysia nervous systemProtein kinase CCell neuronsAplysia californicaBag cell clustersCalcium channelsChannel alpha1 subunitCell clustersVesicular channelsMembrane proteinsReverse-transcribed RNAVesicular localizationPlasma membraneEgg-laying hormoneMolecular mechanismsSubcellular distributionKinase CLysoTracker RedDense-core vesiclesAcidic organellesGrowth conesCalcium channel subtypesCalcium current modulation
1996
Insulin receptor in Aplysia neurons: characterization, molecular cloning, and modulation of ion currents
Jonas E, Knox R, Kaczmarek L, Schwartz J, Solomon D. Insulin receptor in Aplysia neurons: characterization, molecular cloning, and modulation of ion currents. Journal Of Neuroscience 1996, 16: 1645-1658. PMID: 8774433, PMCID: PMC6578688, DOI: 10.1523/jneurosci.16-05-01645.1996.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAmino Acid SequenceAnimalsAplysiaBase SequenceCalcium ChannelsCloning, MolecularDNA, ComplementaryElectrophysiologyImmunohistochemistryInsulinIon ChannelsMolecular ProbesMolecular Sequence DataNeuronsPotassium ChannelsProtein-Tyrosine KinasesReceptor, InsulinTissue DistributionConceptsBag cell neuronsInsulin receptorInsulin-like peptidesImmunocytochemical staining showCell neuronsTyrosine kinase receptorsVertebrate insulinsMolecular cloningHerbimycin ATyrosine residuesTyrosine kinaseKinase receptorsInsulin-like growth factor-1Factor 1Staining showsVoltage-clamped neuronsVoltage-dependent Ca2Growth factor-1Aplysia californicaAplysia neuronsNervous systemReceptorsAction potentialsNeuronsInsulinCloning and Characterization of the Promoter for a Potassium Channel Expressed in High Frequency Firing Neurons (∗)
Gan L, Perney T, Kaczmarek L. Cloning and Characterization of the Promoter for a Potassium Channel Expressed in High Frequency Firing Neurons (∗). Journal Of Biological Chemistry 1996, 271: 5859-5865. PMID: 8621457, DOI: 10.1074/jbc.271.10.5859.Peer-Reviewed Original Research3T3 Cells8-Bromo Cyclic Adenosine MonophosphateAnimalsBase SequenceBinding SitesBucladesineCell DifferentiationChloramphenicol O-AcetyltransferaseCloning, MolecularCyclic AMPDNA PrimersDNA, ComplementaryFibroblastsGene ExpressionGenomic LibraryIonomycinKineticsMiceMolecular Sequence DataNeuronsNeuropeptidesPC12 CellsPlasmidsPodophyllinPodophyllotoxinPotassium ChannelsPotassium Channels, Voltage-GatedPromoter Regions, GeneticRatsRecombinant ProteinsRegulatory Sequences, Nucleic AcidRestriction MappingSequence DeletionShaw Potassium ChannelsTransfection
1995
A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem
Ketchum K, Joiner W, Sellers A, Kaczmarek L, Goldstein S. A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature 1995, 376: 690-695. PMID: 7651518, DOI: 10.1038/376690a0.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBase SequenceCaenorhabditis elegansCells, CulturedDNA PrimersDrosophilaMolecular Sequence DataOocytesPatch-Clamp TechniquesPotassiumPotassium ChannelsProtein ConformationRecombinant ProteinsSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsSequence Homology, Amino AcidSodiumXenopus laevisConceptsP domainPotassium channel proteinCaenorhabditis elegansCommon structural motifChannel proteinsPore domainCellular membranesPrimary structureExcised membrane patchesSignature sequencesFlow of ionsAmino acidsXenopus laevisSelective currentMembrane potentialStructural motifsMembrane patchesPotassium channelsExternal divalent cationsDivalent cationsFunctional propertiesElegansVoltage-dependent mannerGenomeDomainElimination of potassium channel expression by antisense oligonucleotides in a pituitary cell line.
Chung S, Saal D, Kaczmarek L. Elimination of potassium channel expression by antisense oligonucleotides in a pituitary cell line. Proceedings Of The National Academy Of Sciences Of The United States Of America 1995, 92: 5955-5959. PMID: 7597060, PMCID: PMC41620, DOI: 10.1073/pnas.92.13.5955.Peer-Reviewed Original ResearchAnimalsBase SequenceCell MembraneClone CellsDexamethasoneEgtazic AcidGene ExpressionKv1.4 Potassium ChannelKv1.5 Potassium ChannelMembrane PotentialsMolecular Sequence DataOligonucleotides, AntisensePatch-Clamp TechniquesPituitary GlandPotassium Channel BlockersPotassium ChannelsPotassium Channels, Voltage-GatedRatsRNA, MessengerTetraethylammoniumTetraethylammonium CompoundsThionucleotides
1994
The minK potassium channel exists in functional and nonfunctional forms when expressed in the plasma membrane of Xenopus oocytes
Blumenthal E, Kaczmarek L. The minK potassium channel exists in functional and nonfunctional forms when expressed in the plasma membrane of Xenopus oocytes. Journal Of Neuroscience 1994, 14: 3097-3105. PMID: 7514215, PMCID: PMC6577436, DOI: 10.1523/jneurosci.14-05-03097.1994.Peer-Reviewed Original ResearchConceptsN-terminal domainMinK proteinPlasma membraneInjected mRNAXenopus oocytesMinK potassium channelsFunctional potassium channelsPotassium channelsAmino acid epitopeProtein sequencesLevels of proteinMink genesLive oocytesIntracellular cAMP levelsKinetics of activationProteinOocytesMinK mRNANonfunctional formMRNASurface expressionRNAMinK currentsMRNA levelsCAMP levelsA shab potassium channel contributes to action potential broadening in peptidergic neurons
Quattrocki E, Marshall J, Kaczmarek L. A shab potassium channel contributes to action potential broadening in peptidergic neurons. Neuron 1994, 12: 73-86. PMID: 8292361, DOI: 10.1016/0896-6273(94)90153-8.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAmino Acid SequenceAnimalsAplysiaBase SequenceCloning, MolecularDNA, ComplementaryFemaleInvertebrate HormonesKineticsMathematicsModels, TheoreticalMolecular Sequence DataNeuronsOocytesPolymerase Chain ReactionPotassiumPotassium ChannelsShab Potassium ChannelsTetraethylammoniumTetraethylammonium CompoundsTranscription, GeneticXenopus laevis
1991
Identification and localization of a dogfish homolog of human cystic fibrosis transmembrane conductance regulator.
Marshall J, Martin K, Picciotto M, Hockfield S, Nairn A, Kaczmarek L. Identification and localization of a dogfish homolog of human cystic fibrosis transmembrane conductance regulator. Journal Of Biological Chemistry 1991, 266: 22749-22754. PMID: 1718999, DOI: 10.1016/s0021-9258(18)54631-7.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBase SequenceCell MembraneCloning, MolecularCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorDNADogfishHumansImmunoenzyme TechniquesMembrane ProteinsMolecular Sequence DataMolecular WeightProtein KinasesRectumSebaceous GlandsSequence Homology, Nucleic AcidSubstrate SpecificityConceptsCystic fibrosis transmembrane conductance regulatorHuman cystic fibrosis transmembrane conductance regulatorFibrosis transmembrane conductance regulatorTransmembrane conductance regulatorDogfish proteinRectal glandConductance regulatorPutative substrate sitesCyclic AMP-dependent protein kinaseAMP-dependent protein kinaseMajor phosphorylation siteCyclic AMP-dependent protein phosphorylationApical plasma membraneAmino acid sequenceStudy of regulationPhosphorylation sitesProtein phosphorylationCDNA clonesProtein kinaseSimilar molecular massCFTR sequencePlasma membraneAcid sequenceImmunolocalization studiesMolecular mass
1990
Cloning and expression of cDNA and genomic clones encoding three delayed rectifier potassium channels in rat brain
Swanson R, Marshall J, Smith J, Williams J, Boyle M, Folander K, Luneau C, Antanavage J, Oliva C, Buhrow S, Bennet C, Stein R, Kaczmarek L. Cloning and expression of cDNA and genomic clones encoding three delayed rectifier potassium channels in rat brain. Neuron 1990, 4: 929-939. PMID: 2361015, DOI: 10.1016/0896-6273(90)90146-7.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBase SequenceBrainCloning, MolecularDNAFemaleMembrane ProteinsMolecular Sequence DataOligonucleotide ProbesOocytesOrgan SpecificityPotassium ChannelsProtein BiosynthesisRatsRats, Inbred StrainsRestriction MappingRNA, MessengerSequence Homology, Nucleic AcidTranscription, GeneticXenopusEstrogen induction of a small, putative K+ channel mRNA in rat uterus
Pragnell M, Snay K, Trimmer J, MacLusky N, Naftolin F, Kaczmarek L, Boyle M. Estrogen induction of a small, putative K+ channel mRNA in rat uterus. Neuron 1990, 4: 807-812. PMID: 2344412, DOI: 10.1016/0896-6273(90)90207-v.Peer-Reviewed Original ResearchConceptsMRNA speciesAmino acid proteinProkaryotic ion channelsDramatic long-term changesMolecular cloningAcid proteinIon channel expressionMammalian sourcesIon channelsXenopus oocytesVoltage-dependent channelsSpeciesStructural motifsCritical roleChannel expressionMRNAChannel mRNAEstrogen inductionLong-term changesInductionCloningProteinMotifRegulationOocytes