2024
Identification of the potassium-binding site in serotonin transporter
Hellsberg E, Boytsov D, Chen Q, Niello M, Freissmuth M, Rudnick G, Zhang Y, Sandtner W, Forrest L. Identification of the potassium-binding site in serotonin transporter. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2319384121. PMID: 38652746, PMCID: PMC11067047, DOI: 10.1073/pnas.2319384121.Peer-Reviewed Original ResearchConceptsSerotonin transporterSite-directed mutagenesis of residuesMutagenesis of residuesSite-directed mutagenesisHeterologous expression systemStudy of vesiclesNa2 siteClearance of serotoninPatch-clamp recordingsExpression systemBinding residuesSequential bindingMolecular dynamics simulationsBinding sitesPotassium binding siteSubstrate accumulationClamp recordingsVesiclesResiduesTurnover rateBindingStructural studiesChemical gradientsBinding configurationsSynaptic cleft
2019
Serotonin transport in the 21st century
Rudnick G, Sandtner W. Serotonin transport in the 21st century. The Journal Of General Physiology 2019, 151: 1248-1264. PMID: 31570504, PMCID: PMC6829555, DOI: 10.1085/jgp.201812066.Peer-Reviewed Original Research
1996
Ion Coupling Stoichiometry for the Norepinephrine Transporter in Membrane Vesicles from Stably Transfected Cells (∗)
Gu H, Wall S, Rudnick G. Ion Coupling Stoichiometry for the Norepinephrine Transporter in Membrane Vesicles from Stably Transfected Cells (∗). Journal Of Biological Chemistry 1996, 271: 6911-6916. PMID: 8636118, DOI: 10.1074/jbc.271.12.6911.Peer-Reviewed Original ResearchConceptsMembrane vesiclesTransmembrane ion gradientsLLC-PK1 cellsMajor substrateTransport substratesTransfected CellsStably Transfected CellsIon gradientsCoupling stoichiometryNet positive chargeDA accumulationVesiclesSubstrate moleculesTransportersNorepinephrine transporterAccumulationCellsGamma-aminobutyric acidCotransportDAGradientStoichiometrySubstrateAbsenceTransport processes
1993
From synapse to vesicle: The reuptake and storage of biogenic amine neurotransmitters
Rudnick G, Clark J. From synapse to vesicle: The reuptake and storage of biogenic amine neurotransmitters. Biochimica Et Biophysica Acta 1993, 1144: 249-263. PMID: 8104483, DOI: 10.1016/0005-2728(93)90109-s.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsPresynaptic plasma membraneBiogenic amine neurotransmittersEndogenous regulatory mechanismsSynaptic transmitter levelsPlasma membraneIndividual proteinsRegulatory mechanismsTransport systemMolecular levelSynaptic vesiclesAmine neurotransmittersIon gradientsTransportersVesiclesCDNARapid progressProteinNeurotransmittersRegulationMechanismMembraneSynapseTransmitter levelsNon-neurotoxic amphetamine derivatives release serotonin through serotonin transporters.
Rudnick G, Wall S. Non-neurotoxic amphetamine derivatives release serotonin through serotonin transporters. Molecular Pharmacology 1993, 43: 271-6. PMID: 8429828.Peer-Reviewed Original ResearchMeSH KeywordsAmphetaminesBlood PlateletsCarrier ProteinsCell MembraneChromaffin GranulesHumansImipramineIn Vitro TechniquesIndansMembrane GlycoproteinsMembrane Transport ProteinsMethamphetamineModels, BiologicalNerve EndingsNerve Tissue ProteinsRadioligand AssaySerotoninSerotonin Plasma Membrane Transport ProteinsConceptsChromaffin granule membrane vesiclesPlasma membrane vesiclesMembrane vesiclesPlatelet plasma membrane vesiclesPlasma membrane transportersSerotonin transportBiogenic amine transportersMembrane transportersAmine transportersTransportersVesiclesDopamine transporterSerotonin transporterModel systemHalf-maximal concentrationNerve terminalsTransmembraneCocaine analogBindingSimilar concentrationsHigh concentrationsCellsTransport
1992
p-Chloroamphetamine induces serotonin release through serotonin transporters.
Rudnick G, Wall S. p-Chloroamphetamine induces serotonin release through serotonin transporters. Biochemistry 1992, 31: 6710-8. PMID: 1322169, DOI: 10.1021/bi00144a010.Peer-Reviewed Original ResearchMeSH KeywordsBinding, CompetitiveBiological TransportBlood PlateletsCarrier ProteinsCell MembraneChloridesHumansHydrogen-Ion ConcentrationImipramineKineticsLithiumLithium ChlorideMembrane GlycoproteinsMembrane Transport ProteinsNerve Tissue ProteinsP-ChloroamphetamineRadioisotope Dilution TechniqueSerotoninSerotonin Plasma Membrane Transport ProteinsTritiumConceptsPlasma membrane vesiclesMembrane vesiclesChromaffin granule membrane vesiclesVesicular amine transporterATP hydrolysisBovine adrenal chromaffin granulesSerotonin transporterAdrenal chromaffin granulesPrevents accumulationAmine transportersPresence of Mg2TransportersVesiclesChromaffin granulesModel systemDelta pHHuman plateletsATPEffluxManner characteristicAccumulationTransmembraneNaCl gradientPCA's abilityP-chloroamphetamineThe molecular mechanism of "ecstasy" [3,4-methylenedioxy-methamphetamine (MDMA)]: serotonin transporters are targets for MDMA-induced serotonin release.
Rudnick G, Wall S. The molecular mechanism of "ecstasy" [3,4-methylenedioxy-methamphetamine (MDMA)]: serotonin transporters are targets for MDMA-induced serotonin release. Proceedings Of The National Academy Of Sciences Of The United States Of America 1992, 89: 1817-1821. PMID: 1347426, PMCID: PMC48544, DOI: 10.1073/pnas.89.5.1817.Peer-Reviewed Original ResearchConceptsPlasma membrane vesiclesMembrane vesiclesAmine transportersVesicular amine transporterBiogenic amine transportersSecretory vesiclesPlasma membraneATP hydrolysisMolecular mechanismsBovine adrenal chromaffin granulesSerotonin transporterAdrenal chromaffin granulesTransportersDirect interactionVesiclesChromaffin granulesHuman plateletsManner characteristicEffluxTransmembraneATPMDMA actionMechanismBindingMembrane
1987
Similarities and Differences among Neuroendocrine, Exocrine, and Endocytic Vesiclesa
CASTLE J, CAMERON R, ARVAN P, VON ZASTROW M, RUDNICK G. Similarities and Differences among Neuroendocrine, Exocrine, and Endocytic Vesiclesa. Annals Of The New York Academy Of Sciences 1987, 493: 448-460. PMID: 3296913, DOI: 10.1111/j.1749-6632.1987.tb27230.x.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsPolarized epithelial cellsSpecific cellular compartmentsEndocytic systemCellular compartmentsEndocytic vesiclesPlasmalemmal domainsTranslocase activityGolgi complexSecretory systemAnalogous functionsCell surfaceDetermines functionCyclic carriersEpithelial cellsEndocrine sourceCompositional overlapMembrane preparationsExport trafficMembraneEndocrine secretionStructural elementsVesiclesComparative analysisParticular originSorting
1982
Bioenergetics of serotonin transport by membrane vesicles derived from platelet dense granules.
Fishkes H, Rudnick G. Bioenergetics of serotonin transport by membrane vesicles derived from platelet dense granules. Journal Of Biological Chemistry 1982, 257: 5671-5677. PMID: 7068613, DOI: 10.1016/s0021-9258(19)83830-9.Peer-Reviewed Original ResearchConceptsPlatelet dense granulesMembrane vesiclesSerotonin transport activitySoluble enzymatic activityPresence of ATPCarbonyl cyanide p-trifluoromethoxyphenylhydrazoneAddition of ATPOsmotic lysatesTransport activityCyanide p-trifluoromethoxyphenylhydrazoneEnzymatic activityDensity gradient centrifugationVesiclesSerotonin transportVesicle interiorDense granulesMembrane potentialP-trifluoromethoxyphenylhydrazoneGradient centrifugationATPAssay mediumAdenine nucleotidesBioenergeticsNucleotidesGranulesCoupling of transmembrane proton gradients to platelet serotonin transport.
Keyes S, Rudnick G. Coupling of transmembrane proton gradients to platelet serotonin transport. Journal Of Biological Chemistry 1982, 257: 1172-1176. PMID: 7056713, DOI: 10.1016/s0021-9258(19)68170-6.Peer-Reviewed Original ResearchConceptsPlasma membrane vesiclesSerotonin transportTransmembrane proton gradientPlatelet plasma membraneTransmembrane ion gradientsApparent competitionPlasma membraneMembrane vesiclesProton gradientIon gradientsSerotonin accumulationSole driving forceVesiclesAccumulationSerotonin transporterPH differencePhysiological pHTransportersTransportPH stimulationMembraneGradient
1979
Mechanism of imipramine inhibition of platelet 5-hydroxytryptamine transport.
Talvenheimo J, Nelson P, Rudnick G. Mechanism of imipramine inhibition of platelet 5-hydroxytryptamine transport. Journal Of Biological Chemistry 1979, 254: 4631-4635. PMID: 438209, DOI: 10.1016/s0021-9258(17)30057-1.Peer-Reviewed Original Research
1978
Reconstitution of 5-hydroxytryptamine transport from cholate-disrupted platelet plasma membrane vesicles.
Rudnick G, Nelson P. Reconstitution of 5-hydroxytryptamine transport from cholate-disrupted platelet plasma membrane vesicles. Biochemistry 1978, 17: 5300-3. PMID: 728400, DOI: 10.1021/bi00617a033.Peer-Reviewed Original ResearchConceptsPlatelet plasma membrane vesiclesPlasma membrane vesiclesMembrane vesiclesTransport activityNative membrane vesiclesHigh molecular weight aggregatesInhibitor sensitivityVesicular structuresVesiclesIntact plateletsWeight aggregatesIonic requirementsSoybean phospholipidsProteoliposomesTransportersActivityPhospholipidsReconstitutionPlatelet 5-hydroxytryptamine transport, an electroneutral mechanism coupled to potassium.
Rudnick G, Nelson P. Platelet 5-hydroxytryptamine transport, an electroneutral mechanism coupled to potassium. Biochemistry 1978, 17: 4739-42. PMID: 728383, DOI: 10.1021/bi00615a021.Peer-Reviewed Original ResearchConceptsPlasma membrane vesiclesLipophilic cation triphenylmethylphosphoniumMembrane potentialMembrane vesiclesElectroneutral mechanismVesicle membraneIon effluxPorcine blood plateletsAbsence of valinomycinAddition of valinomycinPotassium gradientBlood plateletsValinomycinElectrogenic mechanismMembraneNet influxMechanismDinitrophenolVesiclesTransportLittle effectInfluxTriphenylmethylphosphoniumAbsenceEfflux
1976
Equilibrium between two forms of the lac carrier protein in energized and nonenergized membrane vesicles from Escherichia coli.
Rudnick G, Schuldiner S, Kaback H. Equilibrium between two forms of the lac carrier protein in energized and nonenergized membrane vesicles from Escherichia coli. Biochemistry 1976, 15: 5126-31. PMID: 791364, DOI: 10.1021/bi00668a028.Peer-Reviewed Original ResearchConceptsLac carrier proteinMembrane vesiclesCarrier proteinY gene productEscherichia coli ML 308P-nitrophenyl alphaD-lactateMembrane proteinsGene productsML 308Cryptic formVesicle membraneLactose transportElectrochemical gradientEscherichia coliEnergy couplingProteinVesiclesCarbonyl cyanideSimilar affinityCompetitive inhibitorHigh affinity formMembraneBindingFlow dialysisMechanism of β-galactoside transport in Escherichia coli membrane vesicles
Schuldiner S, Rudnick G, Weil R, Kaback H. Mechanism of β-galactoside transport in Escherichia coli membrane vesicles. Trends In Biochemical Sciences 1976, 1: 41-45. DOI: 10.1016/s0968-0004(76)80181-8.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
1975
ACTIVE TRANSPORT IN ISOLATED BACTERIAL MEMBRANE VESICLES: BINDING OF β‐GALACTOSIDES TO THE LAC CARRIER PROTEIN
Kaback H, Rudnick G, Schuldiner S, Short S. ACTIVE TRANSPORT IN ISOLATED BACTERIAL MEMBRANE VESICLES: BINDING OF β‐GALACTOSIDES TO THE LAC CARRIER PROTEIN. Annals Of The New York Academy Of Sciences 1975, 264: 350-357. PMID: 769642, DOI: 10.1111/j.1749-6632.1975.tb31495.x.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsPhotoinactivation of the beta-galactoside transport system in Escherichia coli membrane vesicles with 2-nitro-4-azidophenyl-1-thio-beta-D-galactopyranoside.
Rudnick G, Kaback H, Weil R. Photoinactivation of the beta-galactoside transport system in Escherichia coli membrane vesicles with 2-nitro-4-azidophenyl-1-thio-beta-D-galactopyranoside. Journal Of Biological Chemistry 1975, 250: 1371-1375. PMID: 1089657, DOI: 10.1016/s0021-9258(19)41823-1.Peer-Reviewed Original ResearchConceptsMembrane vesiclesBeta-galactoside transport systemEscherichia coli membrane vesiclesEscherichia coli ML 308Lac carrier proteinD-lactateAmino acid transportTransport systemSteady-state levelsML 308Lactose transportAcid transportCarrier proteinVesiclesD-galactopyranosideApparent KmCompetitive inhibitorIsolated Bacterial Cytoplasmic Membrane Vesicles: A Model System for the Study of Active Transport
Kaback H, Rudnick G, Schuldiner S, Short S. Isolated Bacterial Cytoplasmic Membrane Vesicles: A Model System for the Study of Active Transport. 1975, 249-265. DOI: 10.1007/978-3-642-66224-9_18.Chapters