2015
Direct Interactions with the Integrin β1 Cytoplasmic Tail Activate the Abl2/Arg Kinase*
Simpson MA, Bradley WD, Harburger D, Parsons M, Calderwood DA, Koleske AJ. Direct Interactions with the Integrin β1 Cytoplasmic Tail Activate the Abl2/Arg Kinase*. Journal Of Biological Chemistry 2015, 290: 8360-8372. PMID: 25694433, PMCID: PMC4375489, DOI: 10.1074/jbc.m115.638874.Peer-Reviewed Original ResearchConceptsIntegrin β1 cytoplasmic tailExtracellular matrix adhesion receptorsSrc homology domainFibroblast cell motilityIntegrin β1Β1 cytoplasmic tailMembrane-proximal segmentAdhesion complex formationMatrix adhesion receptorsNonreceptor tyrosine kinaseArg kinase activityArg nonreceptor tyrosine kinaseCancer cell invasivenessHomology domainActin cytoskeletonCytoplasmic tailCytoskeletal remodelingDendrite morphogenesisTyr-783Kinase domainPhosphorylated regionAbl familyΒ1 tailArg kinaseCell motilityPAK6 targets to cell–cell adhesions through its N-terminus in a Cdc42-dependent manner to drive epithelial colony escape
Morse EM, Sun X, Olberding JR, Ha BH, Boggon TJ, Calderwood DA. PAK6 targets to cell–cell adhesions through its N-terminus in a Cdc42-dependent manner to drive epithelial colony escape. Journal Of Cell Science 2015, 129: 380-393. PMID: 26598554, PMCID: PMC4732285, DOI: 10.1242/jcs.177493.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAntigens, CDCadherinsCdc42 GTP-Binding ProteinCell AdhesionCell Line, TumorEpithelial CellsHEK293 CellsHumansIntercellular JunctionsMolecular Sequence DataP21-Activated KinasesProtein BindingProtein Interaction Domains and MotifsProtein Sorting SignalsProtein TransportConceptsCell-cell adhesionN-terminusCdc42/Rac interactive binding (CRIB) domainSerine/threonine kinaseP21-activated kinase (PAK) familyCdc42-dependent mannerPolybasic regionThreonine kinaseCdc42 knockdownKinase familyBinding domainsKinase activityImportant regulatorCell adhesionPAK6Broader rolePAKAdhesionTargetingCdc42PAK1KinaseKnockdownRegulatorMutations
2014
Differences in binding to the ILK complex determines kindlin isoform adhesion localization and integrin activation
Huet-Calderwood C, Brahme NN, Kumar N, Stiegler AL, Raghavan S, Boggon TJ, Calderwood DA. Differences in binding to the ILK complex determines kindlin isoform adhesion localization and integrin activation. Journal Of Cell Science 2014, 127: 4308-4321. PMID: 25086068, PMCID: PMC4179494, DOI: 10.1242/jcs.155879.Peer-Reviewed Original ResearchConceptsIntegrin activationKindlin-2Kindlin-3Focal adhesion proteinsFunctional differencesIntegrin-linked kinaseILK complexAdhesion proteinsF2 subdomainMolecular basisIsoform specificityComplex bindsKindlinFA targetingActivation defectsCell adhesionActivationFALocalizesKinaseGFPSignalingILKIsoformsProtein
2013
Substrate and Inhibitor Specificity of the Type II p21-Activated Kinase, PAK6
Gao J, Ha BH, Lou HJ, Morse EM, Zhang R, Calderwood DA, Turk BE, Boggon TJ. Substrate and Inhibitor Specificity of the Type II p21-Activated Kinase, PAK6. PLOS ONE 2013, 8: e77818. PMID: 24204982, PMCID: PMC3810134, DOI: 10.1371/journal.pone.0077818.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceCatalytic DomainCrystallizationCrystallography, X-RayHEK293 CellsHumansIndolesModels, MolecularMolecular Sequence DataP21-Activated KinasesPeptide FragmentsPhosphorylationProtein ConformationPyrazolesPyrrolesSequence Homology, Amino AcidSignal TransductionSubstrate SpecificitySunitinibConceptsP21-activated kinaseCo-crystal structureRho family small GTPasesPeptide substrate specificityATP-competitive inhibitorsStructure-function relationshipsSmall GTPasesPAK familyCatalytic domainMelanoma-associated mutationsSubstrate specificityInhibitor specificityPAK6Receptor signalingPF-3758309Important effectorsMechanism for KRIT1 Release of ICAP1-Mediated Suppression of Integrin Activation
Liu W, Draheim KM, Zhang R, Calderwood DA, Boggon TJ. Mechanism for KRIT1 Release of ICAP1-Mediated Suppression of Integrin Activation. Molecular Cell 2013, 49: 719-729. PMID: 23317506, PMCID: PMC3684052, DOI: 10.1016/j.molcel.2012.12.005.Peer-Reviewed Original ResearchAdaptor Proteins, Signal TransducingAmino Acid MotifsAmino Acid SequenceCell Line, TumorConserved SequenceCrystallography, X-RayHumansHydrogen BondingHydrophobic and Hydrophilic InteractionsIntegrin beta1Intracellular Signaling Peptides and ProteinsKRIT1 ProteinMembrane ProteinsMicrotubule-Associated ProteinsModels, MolecularMolecular Sequence DataProtein BindingProtein Interaction Domains and MotifsProtein Structure, QuaternaryProto-Oncogene ProteinsSignal Transduction
2012
Structural Basis for Small G Protein Effector Interaction of Ras-related Protein 1 (Rap1) and Adaptor Protein Krev Interaction Trapped 1 (KRIT1)
Li X, Zhang R, Draheim KM, Liu W, Calderwood DA, Boggon TJ. Structural Basis for Small G Protein Effector Interaction of Ras-related Protein 1 (Rap1) and Adaptor Protein Krev Interaction Trapped 1 (KRIT1). Journal Of Biological Chemistry 2012, 287: 22317-22327. PMID: 22577140, PMCID: PMC3381192, DOI: 10.1074/jbc.m112.361295.Peer-Reviewed Original ResearchAmino Acid SequenceCrystallography, X-RayGene Expression RegulationGTP PhosphohydrolasesHemangioma, Cavernous, Central Nervous SystemHumansIntegrinsKRIT1 ProteinMicrotubule-Associated ProteinsModels, BiologicalModels, MolecularMolecular Sequence DataMutagenesisPoint MutationProtein ConformationProtein Interaction MappingProtein Structure, TertiaryProto-Oncogene ProteinsRap1 GTP-Binding ProteinsSequence Homology, Amino AcidSignal TransductionFunctional differences between kindlin-1 and kindlin-2 in keratinocytes
Bandyopadhyay A, Rothschild G, Kim S, Calderwood DA, Raghavan S. Functional differences between kindlin-1 and kindlin-2 in keratinocytes. Journal Of Cell Science 2012, 125: 2172-2184. PMID: 22328497, PMCID: PMC3367939, DOI: 10.1242/jcs.096214.Peer-Reviewed Original ResearchConceptsFocal adhesionsKindlin-2Kindlin-1Cell spreadingPeripheral focal adhesionsIntegrin β1Wild-type cellsUnexpected functional consequencesIntegrin β6Wild-type keratinocytesCytoplasmic tailNull keratinocytesKindlinNull cellsFunctional consequencesDirect interactionFunctional differencesUnique functionRelated integrinsIntegrinsCellsAdhesionKeratinocytesIntegrin αvβ6Knockdown
2010
Structure of a double ubiquitin‐like domain in the talin head: a role in integrin activation
Goult BT, Bouaouina M, Elliott PR, Bate N, Patel B, Gingras AR, Grossmann JG, Roberts GC, Calderwood DA, Critchley DR, Barsukov IL. Structure of a double ubiquitin‐like domain in the talin head: a role in integrin activation. The EMBO Journal 2010, 29: 1069-1080. PMID: 20150896, PMCID: PMC2845276, DOI: 10.1038/emboj.2010.4.Peer-Reviewed Original Research
2009
Structural basis of competition between PINCH1 and PINCH2 for binding to the ankyrin repeat domain of integrin-linked kinase
Chiswell BP, Stiegler AL, Razinia Z, Nalibotski E, Boggon TJ, Calderwood DA. Structural basis of competition between PINCH1 and PINCH2 for binding to the ankyrin repeat domain of integrin-linked kinase. Journal Of Structural Biology 2009, 170: 157-163. PMID: 19963065, PMCID: PMC2841223, DOI: 10.1016/j.jsb.2009.12.002.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAmino Acid SequenceAnkyrin RepeatBinding, CompetitiveCrystallizationDNA-Binding ProteinsGene Expression RegulationLIM Domain ProteinsMembrane ProteinsModels, MolecularMolecular Sequence DataMutagenesisProtein BindingProtein Serine-Threonine KinasesSignal TransductionConceptsIntegrin-linked kinaseAnkyrin repeat domainLIM1 domainIPP complexIsoform-specific functionsIntegrin adhesion receptorsDifferent cellular responsesPINCH2Repeat domainPINCH1Point mutagenesisStructural basisAdhesion receptorsCellular responsesAlters localizationDifferential regulationSame binding siteDirect competitionBinding sitesKinaseDomainAnkyrinParvinMutagenesisMammalsThe Structure of the N-Terminus of Kindlin-1: A Domain Important for αIIbβ3 Integrin Activation
Goult BT, Bouaouina M, Harburger DS, Bate N, Patel B, Anthis NJ, Campbell ID, Calderwood DA, Barsukov IL, Roberts GC, Critchley DR. The Structure of the N-Terminus of Kindlin-1: A Domain Important for αIIbβ3 Integrin Activation. Journal Of Molecular Biology 2009, 394: 944-956. PMID: 19804783, PMCID: PMC2963925, DOI: 10.1016/j.jmb.2009.09.061.Peer-Reviewed Original Research
2006
The Molecular Basis of Filamin Binding to Integrins and Competition with Talin
Kiema T, Lad Y, Jiang P, Oxley CL, Baldassarre M, Wegener KL, Campbell ID, Ylänne J, Calderwood DA. The Molecular Basis of Filamin Binding to Integrins and Competition with Talin. Molecular Cell 2006, 21: 337-347. PMID: 16455489, DOI: 10.1016/j.molcel.2006.01.011.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBinding SitesCalpainContractile ProteinsCrystallography, X-RayFilaminsIntegrin beta ChainsMiceMicrofilament ProteinsModels, MolecularMolecular Sequence DataNIH 3T3 CellsNuclear Magnetic Resonance, BiomolecularProtein BindingProtein ConformationProtein Structure, TertiaryRecombinant Fusion ProteinsReproducibility of ResultsSequence Homology, Amino AcidTalinConceptsAdhesion receptorsTalin-dependent integrin activationActin-crosslinking proteinsIntegrin adhesion receptorsHigh-resolution structuresFilamin bindingExtended beta strandActin cytoskeletonIntegrin tailsMultiple transmembraneMolecular basisStrands CBeta strandsDomain interactionsBiochemical signalsIntegrin functionIntegrin activationFilamin ATalinCell membraneTail formsCytoskeletonProteinBinding sitesFilamin
2003
The Kindler Syndrome Protein Is Regulated by Transforming Growth Factor-β and Involved in Integrin-mediated Adhesion*
Kloeker S, Major MB, Calderwood DA, Ginsberg MH, Jones DA, Beckerle MC. The Kindler Syndrome Protein Is Regulated by Transforming Growth Factor-β and Involved in Integrin-mediated Adhesion*. Journal Of Biological Chemistry 2003, 279: 6824-6833. PMID: 14634021, DOI: 10.1074/jbc.m307978200.Peer-Reviewed Original ResearchMeSH KeywordsActinsAmino Acid SequenceBlotting, NorthernBlotting, WesternCell AdhesionCell LineCell MovementCytoplasmCytoskeletonDisease ProgressionDNA, ComplementaryExtracellular Matrix ProteinsFluorescent Antibody Technique, IndirectGene Expression RegulationHumansIntegrin beta1Integrin beta3IntegrinsMembrane ProteinsModels, MolecularMolecular Sequence DataMutationNeoplasm ProteinsOligonucleotide Array Sequence AnalysisProtein BindingProtein Structure, TertiaryRNARNA, MessengerRNA, Small InterferingSequence Homology, Amino AcidTime FactorsTransfectionTransforming Growth Factor betaUp-RegulationConceptsHuman mammary epithelial cellsCytoplasmic domainIntegrin cytoplasmic domainBeta3 integrin cytoplasmic domainsCDNA microarray analysisTGF-beta stimulationNormal cell spreadingMammary epithelial cellsSyndrome proteinFERM domainFocal adhesionsTranscriptional profilesProtein abundanceCritical residuesMicroarray analysisCell spreadingGene leadTalin-FERMCell migrationCancer progressionIntegrin betaGenesCell processesAutosomal recessive genodermatosisEpithelial cellsTalin Binding to Integrin ß Tails: A Final Common Step in Integrin Activation
Tadokoro S, Shattil SJ, Eto K, Tai V, Liddington RC, de Pereda J, Ginsberg MH, Calderwood DA. Talin Binding to Integrin ß Tails: A Final Common Step in Integrin Activation. Science 2003, 302: 103-106. PMID: 14526080, DOI: 10.1126/science.1086652.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAmino Acid SubstitutionAnimalsAntibodies, MonoclonalCell LineFibronectinsHumansIntegrin beta ChainsIntegrin beta1Integrin beta3Molecular Sequence DataMutationPlatelet Glycoprotein GPIIb-IIIa ComplexProtein BindingProtein ConformationProtein Structure, TertiaryRecombinant ProteinsRNA, Small InterferingSignal TransductionTalinTransfectionConceptsIntegrin activationCytoplasmic tailIntegrin betaCytoskeletal protein talinIntegrin extracellular domainCellular signaling cascadesIntegrin beta tailsNormal cell adhesionBinding of talinProtein talinBeta tailsSignaling cascadesIntegrin affinityConformational rearrangementsExtracellular domainFinal common stepTalinCell adhesionExtracellular matrixCommon stepSpecific bindingActivationBindingTailAffinityIntegrin β cytoplasmic domain interactions with phosphotyrosine-binding domains: A structural prototype for diversity in integrin signaling
Calderwood DA, Fujioka Y, de Pereda JM, García-Alvarez B, Nakamoto T, Margolis B, McGlade CJ, Liddington RC, Ginsberg MH. Integrin β cytoplasmic domain interactions with phosphotyrosine-binding domains: A structural prototype for diversity in integrin signaling. Proceedings Of The National Academy Of Sciences Of The United States Of America 2003, 100: 2272-2277. PMID: 12606711, PMCID: PMC151330, DOI: 10.1073/pnas.262791999.Peer-Reviewed Original ResearchMeSH KeywordsAlanineAmino Acid SequenceAnimalsCHO CellsCricetinaeCytoplasmDatabases as TopicDNADose-Response Relationship, DrugElectrophoresis, Polyacrylamide GelGlutathione TransferaseHumansIntegrin beta ChainsIntegrinsMiceModels, MolecularMolecular Sequence DataMutagenesis, Site-DirectedMutationPhosphorylationPhosphotyrosinePrecipitin TestsProtein BindingProtein ConformationProtein Structure, TertiaryRecombinant Fusion ProteinsRecombinant ProteinsSequence Homology, Amino AcidSignal TransductionTransfectionTyrosineConceptsIntegrin beta tailsBeta tailsPTB domainIntegrin tailsDok-1Heterodimeric integrin adhesion receptorsBiological functionsDomain interactionsPTB domain-containing proteinsDomain-containing proteinsDomain-ligand interactionsPhosphotyrosine-binding (PTB) domainPhosphotyrosine-binding domainCytoplasmic domain interactionsIntegrin-binding proteinsIntegrin adhesion receptorsIntegrin alpha IIbNPXY motifProtein modulesCytoplasmic domainCytoplasmic proteinsAlpha IIbCytoskeletal proteinsCanonical recognition sequenceInteracting residuesStructural Determinants of Integrin Recognition by Talin
Garcı́a-Alvarez B, de Pereda JM, Calderwood DA, Ulmer TS, Critchley D, Campbell ID, Ginsberg MH, Liddington RC. Structural Determinants of Integrin Recognition by Talin. Molecular Cell 2003, 11: 49-58. PMID: 12535520, DOI: 10.1016/s1097-2765(02)00823-7.Peer-Reviewed Original ResearchConceptsBidirectional signal transductionFragment of talinIntegrin adhesion receptorsFERM domainIntegrin tailsCytoplasmic domainCytoplasmic proteinsSignal transductionIntegrin linkagesTransmembrane receptorsTalinMutational analysisAdhesion receptorsDomain recognitionCell interiorIntegrin recognitionStructural determinantsLigand interactionsNovel variantsStructural paradigmFragmentsTransductionReceptorsTailDomain
2002
The N-terminal SH2 Domains of Syk and ZAP-70 Mediate Phosphotyrosine-independent Binding to Integrin β Cytoplasmic Domains*
Woodside DG, Obergfell A, Talapatra A, Calderwood DA, Shattil SJ, Ginsberg MH. The N-terminal SH2 Domains of Syk and ZAP-70 Mediate Phosphotyrosine-independent Binding to Integrin β Cytoplasmic Domains*. Journal Of Biological Chemistry 2002, 277: 39401-39408. PMID: 12171941, DOI: 10.1074/jbc.m207657200.Peer-Reviewed Original ResearchAmino Acid SequenceAnimalsCHO CellsCricetinaeCytoplasmDose-Response Relationship, DrugEnzyme PrecursorsGenetic VectorsGlutathione TransferaseIntegrin beta ChainsIntracellular Signaling Peptides and ProteinsKineticsModels, GeneticMolecular Sequence DataNickelPhosphorylationPhosphotyrosinePrecipitin TestsProtein BindingProtein Structure, TertiaryProtein-Tyrosine KinasesRecombinant Fusion ProteinsSequence Homology, Amino AcidSrc Homology DomainsSurface Plasmon ResonanceSyk KinaseTime FactorsZAP-70 Protein-Tyrosine KinaseThe Phosphotyrosine Binding-like Domain of Talin Activates Integrins*
Calderwood DA, Yan B, de Pereda JM, Alvarez B, Fujioka Y, Liddington RC, Ginsberg MH. The Phosphotyrosine Binding-like Domain of Talin Activates Integrins*. Journal Of Biological Chemistry 2002, 277: 21749-21758. PMID: 11932255, DOI: 10.1074/jbc.m111996200.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceAnimalsCell AdhesionCell SeparationCHO CellsCricetinaeCytoplasmDNA, ComplementaryFlow CytometryIntegrinsKineticsLigandsModels, MolecularMolecular Sequence DataMutationPhosphotyrosineProtein BindingProtein FoldingProtein Structure, TertiaryRecombinant Fusion ProteinsRecombinant ProteinsSequence Homology, Amino AcidSurface Plasmon ResonanceTalinTime FactorsConceptsIntegrin beta cytoplasmic domainsBeta cytoplasmic domainsIntegrin beta tailsPTB domainCytoplasmic domainBeta tailsHead domainBeta3 tailPhosphotyrosine-binding (PTB) domainIntegrin adhesion receptorsBeta turnActivation of integrinsBinding-like domainsNPXY motifFERM domainTalin fragmentCellular regulationF3 subdomainsActivates IntegrinPeptide ligandsIntegrin activationAdhesion receptorsTalinMotifIntegrins
2001
PEA-15 Mediates Cytoplasmic Sequestration of ERK MAP Kinase
Formstecher E, Ramos J, Fauquet M, Calderwood D, Hsieh J, Canton B, Nguyen X, Barnier J, Camonis J, Ginsberg M, Chneiweiss H. PEA-15 Mediates Cytoplasmic Sequestration of ERK MAP Kinase. Developmental Cell 2001, 1: 239-250. PMID: 11702783, DOI: 10.1016/s1534-5807(01)00035-1.Peer-Reviewed Original ResearchMeSH Keywords3T3 CellsActive Transport, Cell NucleusAmino Acid SequenceAnimalsApoptosis Regulatory ProteinsBlotting, NorthernCell DivisionCell NucleusCell SurvivalCHO CellsCricetinaeCytoplasmDNA, ComplementaryDose-Response Relationship, DrugGreen Fluorescent ProteinsImmunohistochemistryLuminescent ProteinsMAP Kinase Signaling SystemMiceMicroscopy, FluorescenceMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3Mitogen-Activated Protein KinasesModels, BiologicalMolecular Sequence DataMutationPhosphoproteinsPrecipitin TestsProtein BindingSequence Homology, Amino AcidTime FactorsTranscription, GeneticTransfectionTwo-Hybrid System TechniquesConceptsERK MAP kinasePEA-15MAP kinaseERK nuclear localizationNuclear export sequenceERK-dependent transcriptionMAP kinase pathwayMultiple cell typesERK 1/2 MAP kinase pathwayExport sequenceSubcellular localizationNuclear localizationCytoplasmic sequestrationKinase pathwayIntegrin functionCell typesCell growthKinaseBiological outcomesCell proliferationGenetic deletionTranscriptionERKLocalizationProliferationCalpain Cleavage Promotes Talin Binding to the β3Integrin Cytoplasmic Domain*
Yan B, Calderwood D, Yaspan B, Ginsberg M. Calpain Cleavage Promotes Talin Binding to the β3Integrin Cytoplasmic Domain*. Journal Of Biological Chemistry 2001, 276: 28164-28170. PMID: 11382782, DOI: 10.1074/jbc.m104161200.Peer-Reviewed Original ResearchAmino Acid SequenceAnimalsAntigens, CDBiotinBlood PlateletsCalpainCytoplasmCytoskeletonDNA, ComplementaryDose-Response Relationship, DrugGas Chromatography-Mass SpectrometryHumansIntegrin beta3IntegrinsKineticsMolecular Sequence DataPlatelet Membrane GlycoproteinsProtein BindingProtein Structure, TertiaryRatsRecombinant ProteinsSpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationSurface Plasmon ResonanceTalinTime Factors
2000
Class- and Splice Variant-specific Association of CD98 with Integrin β Cytoplasmic Domains*
Zent R, Fenczik C, Calderwood D, Liu S, Dellos M, Ginsberg M. Class- and Splice Variant-specific Association of CD98 with Integrin β Cytoplasmic Domains*. Journal Of Biological Chemistry 2000, 275: 5059-5064. PMID: 10671548, DOI: 10.1074/jbc.275.7.5059.Peer-Reviewed Original ResearchConceptsCytoplasmic domainIntegrin activationMuscle-specific splice variantIntegrin beta cytoplasmic domainsBasic amino acid transportType II transmembrane proteinIntegrin β cytoplasmic domainBeta cytoplasmic domainsIntegrin cytoplasmic domainCell fusion eventsIntegrin adhesion receptorsAmino acid transportTransmembrane proteinMembrane proteinsFusion eventsIntegrin classAdhesion receptorsSplice variantsAcid transportCD98Variant specificityProteinIntegrinsDomainActivation