2020
Signalling through cerebral cavernous malformation protein networks
Su VL, Calderwood DA. Signalling through cerebral cavernous malformation protein networks. Open Biology 2020, 10: 200263. PMID: 33234067, PMCID: PMC7729028, DOI: 10.1098/rsob.200263.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiomarkersCarrier ProteinsDisease ManagementDisease SusceptibilityGenetic Predisposition to DiseaseHemangioma, Cavernous, Central Nervous SystemHumansIntracellular SpaceMutationProtein BindingProtein Interaction Domains and MotifsProtein Interaction MappingProtein Interaction MapsProtein TransportSignal TransductionConceptsCCM proteinsCerebral cavernous malformationsCell junctionalMEKK3-MEK5Protein complexesAdaptor proteinProtein functionSubcellular localizationCytoskeletal reorganizationComplex proteinsProtein networkRhoA-ROCKMolecular basisProtein activityGene expressionFunction mutationsCell adhesionCell contractilityProteinPathwayLeaky blood vesselsCurrent knowledgeDisease pathologyCdc42Recent advancesDifferences in self-association between kindlin-2 and kindlin-3 are associated with differential integrin binding
Kadry YA, Maisuria EM, Huet-Calderwood C, Calderwood DA. Differences in self-association between kindlin-2 and kindlin-3 are associated with differential integrin binding. Journal Of Biological Chemistry 2020, 295: 11161-11173. PMID: 32546480, PMCID: PMC7415974, DOI: 10.1074/jbc.ra120.013618.Peer-Reviewed Original ResearchConceptsKindlin-3Kindlin-2Focal adhesionsIntegrin cytoplasmic domainTransmembrane adhesion receptorsComparative sequence analysisLive-cell imagingAbility of cellsCytoplasmic domainF3 subdomainsMammalian cellsCytoplasmic componentsExtracellular environmentAdhesion receptorsKindlinSequence analysisIntegrin familySelf-associationIntegrin bindingPhysiological importanceMolecular levelPoint mutationsProteinCellsAdhesion
2019
The subcellular localization of type I p21-activated kinases is controlled by the disordered variable region and polybasic sequences
Sun X, Su VL, Calderwood DA. The subcellular localization of type I p21-activated kinases is controlled by the disordered variable region and polybasic sequences. Journal Of Biological Chemistry 2019, 294: 14319-14332. PMID: 31391252, PMCID: PMC6768646, DOI: 10.1074/jbc.ra119.007692.Peer-Reviewed Original ResearchConceptsCell-cell contactCell-cell junctionsPolybasic sequenceP21-activated kinaseSmall GTPases RacVariable regionsCell-cell boundariesPAK regulationDomain organizationCdc42 bindingAdhesion dynamicsCRIB domainGTPases RacSubcellular localizationTruncation mutantsKinase domainKinase effectorsCellular signalsExtensive similaritySequence regionsPAK1Cell adhesionCdc42PAKKinase
2015
CCM2–CCM3 interaction stabilizes their protein expression and permits endothelial network formation
Draheim KM, Li X, Zhang R, Fisher OS, Villari G, Boggon TJ, Calderwood DA. CCM2–CCM3 interaction stabilizes their protein expression and permits endothelial network formation. Journal Of Cell Biology 2015, 208: 987-1001. PMID: 25825518, PMCID: PMC4384732, DOI: 10.1083/jcb.201407129.Peer-Reviewed Original ResearchMeSH KeywordsApoptosis Regulatory ProteinsBinding SitesCarrier ProteinsCell LineCell ProliferationCentral Nervous SystemCrystallography, X-RayGene ExpressionHemangioma, Cavernous, Central Nervous SystemHumansMembrane ProteinsMutagenesisNeovascularization, PhysiologicPaxillinProtein BindingProtein Interaction MappingProtein Structure, TertiaryProteolysisProto-Oncogene ProteinsRNA InterferenceRNA, Small InterferingSequence AlignmentConceptsBinding-deficient mutantStructure-guided mutagenesisNormal cell growthCerebral cavernous malformationsEndothelial network formationHomology domainCCM3 proteinsProteasomal degradationEndothelial cell network formationMolecular basisCell network formationEssential adaptorCell growthFunctional significanceCCM3 expressionX-ray crystallographyProtein expressionCCM2CCM3Network formationExpressionMutantsHP1MutagenesisAdaptorPAK6 targets to cell–cell adhesions through its N-terminus in a Cdc42-dependent manner to drive epithelial colony escape
Morse EM, Sun X, Olberding JR, Ha BH, Boggon TJ, Calderwood DA. PAK6 targets to cell–cell adhesions through its N-terminus in a Cdc42-dependent manner to drive epithelial colony escape. Journal Of Cell Science 2015, 129: 380-393. PMID: 26598554, PMCID: PMC4732285, DOI: 10.1242/jcs.177493.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAntigens, CDCadherinsCdc42 GTP-Binding ProteinCell AdhesionCell Line, TumorEpithelial CellsHEK293 CellsHumansIntercellular JunctionsMolecular Sequence DataP21-Activated KinasesProtein BindingProtein Interaction Domains and MotifsProtein Sorting SignalsProtein TransportConceptsCell-cell adhesionN-terminusCdc42/Rac interactive binding (CRIB) domainSerine/threonine kinaseP21-activated kinase (PAK) familyCdc42-dependent mannerPolybasic regionThreonine kinaseCdc42 knockdownKinase familyBinding domainsKinase activityImportant regulatorCell adhesionPAK6Broader rolePAKAdhesionTargetingCdc42PAK1KinaseKnockdownRegulatorMutations
2014
TRIM15 is a focal adhesion protein that regulates focal adhesion disassembly
Uchil PD, Pawliczek T, Reynolds TD, Ding S, Hinz A, Munro JB, Huang F, Floyd RW, Yang H, Hamilton WL, Bewersdorf J, Xiong Y, Calderwood DA, Mothes W. TRIM15 is a focal adhesion protein that regulates focal adhesion disassembly. Journal Of Cell Science 2014, 127: 3928-3942. PMID: 25015296, PMCID: PMC4163643, DOI: 10.1242/jcs.143537.Peer-Reviewed Original ResearchConceptsFocal adhesion proteinsFocal adhesionsCell migrationAdhesion proteinsMulti-adaptor proteinTripartite motif (TRIM) protein familyFocal adhesion dynamicsFocal adhesion turnoverFocal adhesion componentsCoiled-coil domainImpaired cell migrationII-independent mannerLD2 motifAdhesion turnoverActin cytoskeletonProtein familyAdhesion dynamicsCellular functionsDynamic turnoverMacromolecular complexesRegulatory componentsFocal contactsAdhesion componentsExtracellular matrixTRIM15
2013
Kindlin Binds Migfilin Tandem LIM Domains and Regulates Migfilin Focal Adhesion Localization and Recruitment Dynamics*
Brahme NN, Harburger DS, Kemp-O'Brien K, Stewart R, Raghavan S, Parsons M, Calderwood DA. Kindlin Binds Migfilin Tandem LIM Domains and Regulates Migfilin Focal Adhesion Localization and Recruitment Dynamics*. Journal Of Biological Chemistry 2013, 288: 35604-35616. PMID: 24165133, PMCID: PMC3853305, DOI: 10.1074/jbc.m113.483016.Peer-Reviewed Original ResearchConceptsFocal adhesionsLIM domainsActin cytoskeletonFluorescence resonance energy transferFA localizationActin-rich stress fibersC-terminal LIM domainsLIM domain regionTandem LIM domainsTwo-hybrid screenDomain-containing adaptor proteinFocal adhesion localizationIntegrin-binding proteinsIntegrin adhesion receptorsPulldown assaysAdaptor proteinMigfilinFA formationKindlinRecruitment dynamicsStress fibersKindlin-2Integrin activationIntracellular proteinsAdhesion receptorsASB2α, an E3 Ubiquitin Ligase Specificity Subunit, Regulates Cell Spreading and Triggers Proteasomal Degradation of Filamins by Targeting the Filamin Calponin Homology 1 Domain*
Razinia Z, Baldassarre M, Cantelli G, Calderwood DA. ASB2α, an E3 Ubiquitin Ligase Specificity Subunit, Regulates Cell Spreading and Triggers Proteasomal Degradation of Filamins by Targeting the Filamin Calponin Homology 1 Domain*. Journal Of Biological Chemistry 2013, 288: 32093-32105. PMID: 24052262, PMCID: PMC3814802, DOI: 10.1074/jbc.m113.496604.Peer-Reviewed Original ResearchConceptsHematopoietic cell differentiationSpecificity subunitProteasomal degradationF-actin-rich structuresE3 ubiquitin ligase complexCell differentiationNormal subcellular localizationHomology 1 domainLoss of filaminUbiquitin acceptor sitesActin-binding domainCross-linking proteinsActin-binding siteLigase complexActin cytoskeletonTransmembrane proteinSubcellular localizationΑ-actinin1Transient expressionASB2αDegradation of filaminMinimal fragmentLysine residuesFilaminCell adhesionTalins and kindlins: partners in integrin-mediated adhesion
Calderwood DA, Campbell ID, Critchley DR. Talins and kindlins: partners in integrin-mediated adhesion. Nature Reviews Molecular Cell Biology 2013, 14: 503-517. PMID: 23860236, PMCID: PMC4116690, DOI: 10.1038/nrm3624.Peer-Reviewed Original ResearchConceptsIntegrin activationAdhesion complexesTalin headAmino-terminal headTalin-vinculin interactionsIntegrin cytoplasmic domainIntegrin activation pathwaysIntegrin extracellular domainIntegrin subunitsShort cytoplasmic tailDefective integrin activationPost-translational modificationsFull-length talinTalin-integrin interactionActin-binding siteImportant control pointTransmit chemicalTalin autoinhibitionDisease-causing mutationsKey PointsIntegrinsActin cytoskeletonProtein talinExtracellular ligandsFocal adhesionsIntegrin tailsPurification and SAXS Analysis of the Integrin Linked Kinase, PINCH, Parvin (IPP) Heterotrimeric Complex
Stiegler AL, Grant TD, Luft JR, Calderwood DA, Snell EH, Boggon TJ. Purification and SAXS Analysis of the Integrin Linked Kinase, PINCH, Parvin (IPP) Heterotrimeric Complex. PLOS ONE 2013, 8: e55591. PMID: 23383235, PMCID: PMC3561323, DOI: 10.1371/journal.pone.0055591.Peer-Reviewed Original ResearchConceptsIPP complexEnsemble optimization methodDetailed purification protocolHeterotrimeric protein complexIntegrin Linked KinaseIntegrin adhesion receptorsInter-domain linkerInter-domain interactionsInter-domain contactsGel filtration analysisΑ-parvinLIM1 domainHuman ILKSmall-angle X-ray scatteringHeterotrimeric complexProtein complexesFocal adhesionsAdhesion receptorsPINCH proteinFirst structural characterizationFiltration analysisPurification protocolConformational restraintsKinaseILKMechanism for KRIT1 Release of ICAP1-Mediated Suppression of Integrin Activation
Liu W, Draheim KM, Zhang R, Calderwood DA, Boggon TJ. Mechanism for KRIT1 Release of ICAP1-Mediated Suppression of Integrin Activation. Molecular Cell 2013, 49: 719-729. PMID: 23317506, PMCID: PMC3684052, DOI: 10.1016/j.molcel.2012.12.005.Peer-Reviewed Original ResearchAdaptor Proteins, Signal TransducingAmino Acid MotifsAmino Acid SequenceCell Line, TumorConserved SequenceCrystallography, X-RayHumansHydrogen BondingHydrophobic and Hydrophilic InteractionsIntegrin beta1Intracellular Signaling Peptides and ProteinsKRIT1 ProteinMembrane ProteinsMicrotubule-Associated ProteinsModels, MolecularMolecular Sequence DataProtein BindingProtein Interaction Domains and MotifsProtein Structure, QuaternaryProto-Oncogene ProteinsSignal Transduction
2012
Structural and Functional Characterization of the Kindlin-1 Pleckstrin Homology Domain*
Yates LA, Lumb CN, Brahme NN, Zalyte R, Bird LE, De Colibus L, Owens RJ, Calderwood DA, Sansom MS, Gilbert RJ. Structural and Functional Characterization of the Kindlin-1 Pleckstrin Homology Domain*. Journal Of Biological Chemistry 2012, 287: 43246-43261. PMID: 23132860, PMCID: PMC3527912, DOI: 10.1074/jbc.m112.422089.Peer-Reviewed Original ResearchStructural Basis for Paxillin Binding and Focal Adhesion Targeting of β-Parvin*
Stiegler AL, Draheim KM, Li X, Chayen NE, Calderwood DA, Boggon TJ. Structural Basis for Paxillin Binding and Focal Adhesion Targeting of β-Parvin*. Journal Of Biological Chemistry 2012, 287: 32566-32577. PMID: 22869380, PMCID: PMC3463362, DOI: 10.1074/jbc.m112.367342.Peer-Reviewed Original ResearchConceptsΒ-parvinFocal adhesionsPaxillin bindingΑ-parvinFocal adhesion targetingN-terminal α-helixPaxillin LD1 motifCalponin homology domainFirst molecular detailsHigh sequence similarityCytoplasmic adaptor proteinIntegrin-linked kinasePaxillin LD1Co-crystal structureLD4 motifSignificant conformational flexibilityHomology domainAdaptor proteinCellular functionsSequence similarityRepeat motifsProper localizationMolecular detailsPaxillinStructural basisFilamins in Mechanosensing and Signaling
Razinia Z, Mäkelä T, Ylänne J, Calderwood DA. Filamins in Mechanosensing and Signaling. Annual Review Of Biophysics 2012, 41: 227-246. PMID: 22404683, PMCID: PMC5508560, DOI: 10.1146/annurev-biophys-050511-102252.Peer-Reviewed Original ResearchConceptsPlasma membraneActin filamentsActin-binding proteinsExtracellular matrix connectionsCortical rigidityActin cytoskeletonCellular functionsCell cortexTranscription factorsTransmembrane receptorsAdhesion proteinsCell shapeFilaminIon channelsDiverse arrayFunctional evidenceEssential roleProteinMatrix connectionsPhysical forcesMembraneFilamentsCytoskeletalMechanosensingCytoskeleton
2011
The E3 ubiquitin ligase specificity subunit ASB2α targets filamins for proteasomal degradation by interacting with the filamin actin-binding domain
Razinia Z, Baldassarre M, Bouaouina M, Lamsoul I, Lutz PG, Calderwood DA. The E3 ubiquitin ligase specificity subunit ASB2α targets filamins for proteasomal degradation by interacting with the filamin actin-binding domain. Journal Of Cell Science 2011, 124: 2631-2641. PMID: 21750192, PMCID: PMC3138704, DOI: 10.1242/jcs.084343.Peer-Reviewed Original ResearchConceptsFilamin degradationProteasomal degradationCell differentiationDomain of filaminActin-rich structuresUbiquitin-proteasome pathwayExtracellular matrix connectionsActin cytoskeletonTransmembrane proteinSubcellular localizationMolecular basisSignaling cascadesASB2αActin filamentsFilaminAcute degradationBiochemical assaysMyeloid leukemia cellsImportant familyActinEarly eventsProteinLeukemia cellsImportant mechanismDifferentiationFunctional and Structural Insights into ASB2α, a Novel Regulator of Integrin-dependent Adhesion of Hematopoietic Cells*
Lamsoul I, Burande CF, Razinia Z, Houles TC, Menoret D, Baldassarre M, Erard M, Moog-Lutz C, Calderwood DA, Lutz PG. Functional and Structural Insights into ASB2α, a Novel Regulator of Integrin-dependent Adhesion of Hematopoietic Cells*. Journal Of Biological Chemistry 2011, 286: 30571-30581. PMID: 21737450, PMCID: PMC3162417, DOI: 10.1074/jbc.m111.220921.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAmino Acid MotifsAnimalsCarrier ProteinsCell AdhesionFibronectinsGene Expression RegulationHeLa CellsHematopoietic Stem CellsHumansIntegrinsMiceMusclesNIH 3T3 CellsProtein BindingProtein Structure, TertiarySubstrate SpecificitySuppressor of Cytokine Signaling ProteinsConceptsN-terminal regionHematopoietic cellsE3 ubiquitin ligase complexE3 ubiquitin ligase functionShort N-terminal regionUbiquitin ligase complexUbiquitin ligase functionAcid-responsive genesIntegrin-dependent adhesionRetinoic acid-responsive geneCell fateLigase complexSpecificity subunitLigase functionResponsive genesLeukemia cellsProteasomal degradationNovel regulatorFilamin A.Myogenic differentiationStructural insightsASB2αΒ-integrinAcute promyelocytic leukemia cellsStructural homologyTalin and Signaling Through Integrins
Bouaouina M, Harburger DS, Calderwood DA. Talin and Signaling Through Integrins. Methods In Molecular Biology 2011, 757: 325-347. PMID: 21909921, PMCID: PMC5642996, DOI: 10.1007/978-1-61779-166-6_20.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiological AssayCHO CellsCricetinaeFlow CytometryIntegrinsProtein BindingRecombinant ProteinsSignal TransductionTalinConceptsCytoplasmic tailIntegrin activationIntegrin β tailsAbility of integrinsIntegrin cytoplasmic tailsShort cytoplasmic tailIntegrin adhesion receptorsBinding of talinDominant-negative constructMulticellular animalsActin cytoskeletonΒ tailExtracellular ligandsTalin domainTalinCharacterization of interactionsIntracellular signalsAdhesion receptorsCell adhesionIntegrin receptorsCultured cellsExtracellular matrixNegative constructsIntegrin subunitsIntegrins
2009
Structural basis of competition between PINCH1 and PINCH2 for binding to the ankyrin repeat domain of integrin-linked kinase
Chiswell BP, Stiegler AL, Razinia Z, Nalibotski E, Boggon TJ, Calderwood DA. Structural basis of competition between PINCH1 and PINCH2 for binding to the ankyrin repeat domain of integrin-linked kinase. Journal Of Structural Biology 2009, 170: 157-163. PMID: 19963065, PMCID: PMC2841223, DOI: 10.1016/j.jsb.2009.12.002.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAmino Acid SequenceAnkyrin RepeatBinding, CompetitiveCrystallizationDNA-Binding ProteinsGene Expression RegulationLIM Domain ProteinsMembrane ProteinsModels, MolecularMolecular Sequence DataMutagenesisProtein BindingProtein Serine-Threonine KinasesSignal TransductionConceptsIntegrin-linked kinaseAnkyrin repeat domainLIM1 domainIPP complexIsoform-specific functionsIntegrin adhesion receptorsDifferent cellular responsesPINCH2Repeat domainPINCH1Point mutagenesisStructural basisAdhesion receptorsCellular responsesAlters localizationDifferential regulationSame binding siteDirect competitionBinding sitesKinaseDomainAnkyrinParvinMutagenesisMammalsFilamin A–β1 Integrin Complex Tunes Epithelial Cell Response to Matrix Tension
Gehler S, Baldassarre M, Lad Y, Leight JL, Wozniak MA, Riching KM, Eliceiri KW, Weaver VM, Calderwood DA, Keely PJ. Filamin A–β1 Integrin Complex Tunes Epithelial Cell Response to Matrix Tension. Molecular Biology Of The Cell 2009, 20: 3224-3238. PMID: 19458194, PMCID: PMC2710838, DOI: 10.1091/mbc.e08-12-1186.Peer-Reviewed Original ResearchConceptsFilamin AExtracellular matrixProtein filamin AHigh-density gelsMatrix tensionCollagen gelsMechanosensitive complexBreast epithelial cellsCellular contractilityMatrix stiffnessMorphogenesisEpithelial cell responsesCell typesDuctal morphogenesisEpithelial cellsCellsCollagen matrixGel contractionActinCollagen remodelingIntegrinsCell responsesCollagen fibrilsRemodelingGel
2008
The structural basis of integrin-linked kinase–PINCH interactions
Chiswell BP, Zhang R, Murphy JW, Boggon TJ, Calderwood DA. The structural basis of integrin-linked kinase–PINCH interactions. Proceedings Of The National Academy Of Sciences Of The United States Of America 2008, 105: 20677-20682. PMID: 19074270, PMCID: PMC2634877, DOI: 10.1073/pnas.0811415106.Peer-Reviewed Original ResearchConceptsIntegrin-linked kinaseLIM1 domainGrowth factor signalingAtomic resolution descriptionILK bindingAnkyrin repeatsILK-PINCHHeterotrimeric complexZinc fingerMolecular basisMutagenesis dataStructural basisCell adhesionPoint mutationsConformational flexibilityKey interactionsParvinConvergence pointLim1DomainAnkyrinKinaseComplexesRepeatsSignaling