2021
Biallelic PI4KA variants cause neurological, intestinal and immunological disease
Salter CG, Cai Y, Lo B, Helman G, Taylor H, McCartney A, Leslie JS, Accogli A, Zara F, Traverso M, Fasham J, Lees JA, Ferla M, Chioza BA, Wenger O, Scott E, Cross HE, Crawford J, Warshawsky I, Keisling M, Agamanolis D, Melver C, Cox H, Elawad M, Marton T, Wakeling M, Holzinger D, Tippelt S, Munteanu M, Valcheva D, Deal C, Van Meerbeke S, Vockley C, Butte MJ, Acar U, van der Knaap MS, Korenke GC, Kotzaeridou U, Balla T, Simons C, Uhlig HH, Crosby AH, De Camilli P, Wolf NI, Baple EL. Biallelic PI4KA variants cause neurological, intestinal and immunological disease. Brain 2021, 144: 3597-3610. PMID: 34415310, PMCID: PMC8719846, DOI: 10.1093/brain/awab313.Peer-Reviewed Original ResearchConceptsOrgan-specific functionsSequence alterationsStructural modelling studyMultiple cell typesCombinatorial biologyHeterotetrameric complexLipid kinasesMolecular partnersFundamental new insightsPhenotypical outcomesFunctional interactionCell typesMembrane phospholipidsTTC7PhosphatidylinositolCritical roleGene alterationsNew insightsHypomyelinating leukodystrophyEfr3Molecular complexesIIIαPI4KAKinaseComplexes
2012
Recruitment of OCRL and Inpp5B to phagosomes by Rab5 and APPL1 depletes phosphoinositides and attenuates Akt signaling
Bohdanowicz M, Balkin D, De Camilli P, Grinstein S. Recruitment of OCRL and Inpp5B to phagosomes by Rab5 and APPL1 depletes phosphoinositides and attenuates Akt signaling. The FASEB Journal 2012, 26: 1065.1-1065.1. DOI: 10.1096/fasebj.26.1_supplement.1065.1.Peer-Reviewed Original Research
2009
An electrostatic switch displaces phosphatidylinositol phosphate kinases from the membrane during phagocytosis
Fairn G, Ogata K, Botelho R, Stahl P, Anderson R, De Camilli P, Meyer T, Wodak S, Grinstein S. An electrostatic switch displaces phosphatidylinositol phosphate kinases from the membrane during phagocytosis. The Journal Of General Physiology 2009, 135: i1-i1. DOI: 10.1085/jgp1351oia1.Peer-Reviewed Original Research
1988
[17] Type II cAMP-dependent protein kinase regulatory subunit-binding proteins
Lohmann S, De Camilli P, Walter U. [17] Type II cAMP-dependent protein kinase regulatory subunit-binding proteins. Methods In Enzymology 1988, 159: 183-193. PMID: 2842584, DOI: 10.1016/0076-6879(88)59019-5.Peer-Reviewed Original ResearchConceptsRII subunitsCytosolic cAMP-dependent protein kinaseAdditional proteinsType II cAMP-dependent proteinCAMP-dependent protein kinaseCAMP-dependent proteinMicrotubule-associated proteinsRII overlayProtein kinaseSDS-polyacrylamide gel electrophoresisCertain proteinsNative stateProteinSteps of purificationGel electrophoresisSubunitsCellular structureAssay conditionsNonspecific interactionsRIIHigh affinityHigh enough affinityLight microscopyKinaseAffinity
1986
Interaction of the Regulatory Subunit (RII) of cAMP‐Dependent Protein Kinase with Tissue‐Specific Binding Proteins Including Microtubule‐Associated Proteinsa
LOHMANN S, WALTER U, DeCAMILLI P. Interaction of the Regulatory Subunit (RII) of cAMP‐Dependent Protein Kinase with Tissue‐Specific Binding Proteins Including Microtubule‐Associated Proteinsa. Annals Of The New York Academy Of Sciences 1986, 466: 449-452. PMID: 3460424, DOI: 10.1111/j.1749-6632.1986.tb38421.x.Peer-Reviewed Original Research
1984
Immunocytochemistry as a tool in the study of neurotransmitter actions
De Camilli P, Navone F. Immunocytochemistry as a tool in the study of neurotransmitter actions. Trends In Pharmacological Sciences 1984, 5: 300-303. DOI: 10.1016/0165-6147(84)90451-6.Peer-Reviewed Original ResearchSpecific cellular functionsProtein phosphorylation reactionsVariety of phosphoproteinsCellular functionsProtein phosphorylationImportant general mechanismProtein kinaseSecond messengerPhysiological functionsPhosphorylation reactionGeneral mechanismBiochemical informationMammalian brainNeurotransmitter actionPhosphoproteinKinasePhosphorylationImmunocytochemistryNerve cellsTarget neuronsMessengerCellsFunction