Alexandre Jourdon, PhD
Associate Research Scientist in the Child Study CenterDownloadHi-Res Photo
Cards
Appointments
Child Study Center
Primary
Contact Info
About
Titles
Associate Research Scientist in the Child Study Center
Biography
Associate Research Scientist in the laboratory of Flora Vaccarino at Yale, Alexandre studies brain development and Autism Spectrum Disorder in vitro using induced Pluripotent Stem Cells (iPSC) and single-cell Omics. He obtained his PhD in Paris, working in the laboratory of Patrick Charnay in the Biological Institute of the Ecole Normale Supérieure (ENS), and has a MSc in Neuroscience (Paris University UPMC) and a Bioingeneering Degree from INSA (Lyon, France). Alex interests revolve around developmental neuroscience, stem cells biology and single-cell omics. He worked on adult neurogenesis in mice, cortical development in iPSCs and regulatory networks derived from omics data.
Appointments
Child Study Center
Associate Research ScientistPrimary
Other Departments & Organizations
- Child Study Center
- Program in Neurodevelopment and Regeneration
- Vaccarino Lab
Education & Training
- PhD
- Sorbonne Université of Paris, Developmental Biology
Research
Research at a Glance
Yale Co-Authors
Frequent collaborators of Alexandre Jourdon's published research.
Publications Timeline
A big-picture view of Alexandre Jourdon's research output by year.
Flora Vaccarino, MD
Alexej Abyzov, PhD
Jessica Mariani, PhD
Anna Szekely, MD
Davide Capauto, PhD
James McPartland, PhD
9Publications
87Citations
Publications
2024
Evaluating performance and applications of sample-wise cell deconvolution methods on human brain transcriptomic data
Dai R, Chu T, Zhang M, Wang X, Jourdon A, Wu F, Mariani J, Vaccarino F, Lee D, Fullard J, Hoffman G, Roussos P, Wang Y, Wang X, Pinto D, Wang S, Zhang C, consortium P, Chen C, Liu C. Evaluating performance and applications of sample-wise cell deconvolution methods on human brain transcriptomic data. Science Advances 2024, 10: eadh2588. PMID: 38781336, PMCID: PMC11114236, DOI: 10.1126/sciadv.adh2588.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsHuman brain transcriptome dataBrain transcriptomic dataRNA-seqTranscriptome dataCell-type gene expressionGene expressionCell-type proportionsSingle-cell dataMultiple brain disordersBrain cell typesCell deconvolution methodsPostmortem brainsRNA sequencingBrain disordersBrain developmentSchizophreniaEQTLAlzheimer's diseaseCell typesOrganoid samplesBrainBiological applications
2023
Author Correction: Modeling idiopathic autism in forebrain organoids reveals an imbalance of excitatory cortical neuron subtypes during early neurogenesis
Jourdon A, Wu F, Mariani J, Capauto D, Norton S, Tomasini L, Amiri A, Suvakov M, Schreiner J, Jang Y, Panda A, Nguyen C, Cummings E, Han G, Powell K, Szekely A, McPartland J, Pelphrey K, Chawarska K, Ventola P, Abyzov A, Vaccarino F. Author Correction: Modeling idiopathic autism in forebrain organoids reveals an imbalance of excitatory cortical neuron subtypes during early neurogenesis. Nature Neuroscience 2023, 26: 2035-2035. PMID: 37674007, DOI: 10.1038/s41593-023-01447-9.Peer-Reviewed Original ResearchCitationsAltmetricModeling idiopathic autism in forebrain organoids reveals an imbalance of excitatory cortical neuron subtypes during early neurogenesis
Jourdon A, Wu F, Mariani J, Capauto D, Norton S, Tomasini L, Amiri A, Suvakov M, Schreiner J, Jang Y, Panda A, Nguyen C, Cummings E, Han G, Powell K, Szekely A, McPartland J, Pelphrey K, Chawarska K, Ventola P, Abyzov A, Vaccarino F. Modeling idiopathic autism in forebrain organoids reveals an imbalance of excitatory cortical neuron subtypes during early neurogenesis. Nature Neuroscience 2023, 26: 1505-1515. PMID: 37563294, PMCID: PMC10573709, DOI: 10.1038/s41593-023-01399-0.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsIdiopathic autism spectrum disorderCortical neuron subtypesAutism spectrum disorderEarly cortical developmentCortical organoidsCortical plateExcitatory neuronsCortical developmentRare formNeuron subtypesUnaffected fatherASD pathogenesisForebrain organoidsEarly neurogenesisRare variantsIdiopathic autismRisk genesTranscriptomic alterationsNeuronsProbandsSingle-cell transcriptomicsForebrain developmentSpectrum disorderTranscriptomic changesAlterationsEarly Neuronal Differentiation/patterning of the Human Pallium, Modeling by in Vitro Systems, and Disruption in Developmental Disorders
Scuderi S, Jourdon A, Vaccarino F. Early Neuronal Differentiation/patterning of the Human Pallium, Modeling by in Vitro Systems, and Disruption in Developmental Disorders. 2023, 423-442. DOI: 10.1002/9781119860914.ch20.Peer-Reviewed Original ResearchConceptsCentral nervous systemDorsal-anterior partHuman cortexCortical developmentInhibitory neuronsSingle-cell omicsAnimal modelsNervous systemCortical layersMammalian brainBrain regionsCortical formationPopulations of excitatoryTangential migrationAltered developmentCortical structuresAnterior partCortical patterningPrecursor cellsEarly neuronal differentiationIncoming afferentsCortexNeuronal differentiationNeuronsHuman specificity
2022
Analysis of somatic mutations in 131 human brains reveals aging-associated hypermutability
Bae T, Fasching L, Wang Y, Shin JH, Suvakov M, Jang Y, Norton S, Dias C, Mariani J, Jourdon A, Wu F, Panda A, Pattni R, Chahine Y, Yeh R, Roberts RC, Huttner A, Kleinman JE, Hyde TM, Straub RE, Walsh CA, Urban A, Leckman J, Weinberger D, Vaccarino F, Abyzov A, Walsh C, Park P, Sestan N, Weinberger D, Moran J, Gage F, Vaccarino F, Gleeson J, Mathern G, Courchesne E, Roy S, Chess A, Akbarian S, Bizzotto S, Coulter M, Dias C, D’Gama A, Ganz J, Hill R, Huang A, Khoshkhoo S, Kim S, Lee A, Lodato M, Maury E, Miller M, Borges-Monroy R, Rodin R, Zhou Z, Bohrson C, Chu C, Cortes-Ciriano I, Dou Y, Galor A, Gulhan D, Kwon M, Luquette J, Sherman M, Viswanadham V, Jones A, Rosenbluh C, Cho S, Langmead B, Thorpe J, Erwin J, Jaffe A, McConnell M, Narurkar R, Paquola A, Shin J, Straub R, Abyzov A, Bae T, Jang Y, Wang Y, Molitor C, Peters M, Linker S, Reed P, Wang M, Urban A, Zhou B, Zhu X, Pattni R, Serres Amero A, Juan D, Lobon I, Marques-Bonet T, Solis Moruno M, Garcia Perez R, Povolotskaya I, Soriano E, Antaki D, Averbuj D, Ball L, Breuss M, Yang X, Chung C, Emery S, Flasch D, Kidd J, Kopera H, Kwan K, Mills R, Moldovan J, Sun C, Zhao X, Zhou W, Frisbie T, Cherskov A, Fasching L, Jourdon A, Pochareddy S, Scuderi S. Analysis of somatic mutations in 131 human brains reveals aging-associated hypermutability. Science 2022, 377: 511-517. PMID: 35901164, PMCID: PMC9420557, DOI: 10.1126/science.abm6222.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsTranscription factorsSomatic mutationsPutative transcription factorEnhancer-like regionSingle nucleotide mutationsWhole-genome sequencingGene regulationSomatic duplicationGenome sequencingDamaging mutationsBackground mutagenesisMutationsHypermutabilityClonal expansionMotifDiseased brainPotential linkVivo clonal expansionMutagenesisGenesDuplicationSequencingRegulation
2020
SCELLECTOR: ranking amplification bias in single cells using shallow sequencing
Sarangi V, Jourdon A, Bae T, Panda A, Vaccarino F, Abyzov A. SCELLECTOR: ranking amplification bias in single cells using shallow sequencing. BMC Bioinformatics 2020, 21: 521. PMID: 33183232, PMCID: PMC7663899, DOI: 10.1186/s12859-020-03858-y.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsMultiple displacement amplificationShallow sequencingSingle-cell platformsSingle-cell sequencingCoverage sequencing dataSingle cellsHuman neuronal cellsMosaic mutationsAmount of DNAAmplification qualityCell sequencingCoverage sequencingHigh-coverage dataSequencing dataHaplotype informationPhi29 polymeraseDNA damageIndividual cellsNeuronal cellsSequencingAmplification biasAllelic imbalancePresence of sitesMutationsFragment lengthChapter 5 Induced pluripotent stem cells as models of human neurodevelopmental disorders
Jourdon A, Mariani J, Scuderi S, Amiri A, Wu F, Yuen E, Abyzov A, Vaccarino F. Chapter 5 Induced pluripotent stem cells as models of human neurodevelopmental disorders. 2020, 99-127. DOI: 10.1016/b978-0-12-814409-1.00005-7.ChaptersCitationsConceptsPluripotent stem cellsStem cellsStudy of speciesHuman neurodevelopmental disordersEpigenome analysisGene regulationIPSC fieldGenomic variationGene expressionGenetic backgroundDisease modelingStudies of neurodevelopmentIPSCsExperimental approachNeurodevelopmental disordersTranscriptomeGenomeCellsCell phenotypingSpeciesExperimental design issuesPhenotypeRegulationExpressionPhenotyping
2016
Prss56, a novel marker of adult neurogenesis in the mouse brain.
Jourdon A, Gresset A, Spassky N, Charnay P, Topilko P, Santos R. Prss56, a novel marker of adult neurogenesis in the mouse brain. Brain Struct Funct 2016, 221: 4411-4427. PMID: 26701169, DOI: 10.1007/s00429-015-1171-z.Peer-Reviewed Original Research
2015
Boundary Caps Give Rise to Neurogenic Stem Cells and Terminal Glia in the Skin.
Gresset A, Coulpier F, Gerschenfeld G, Jourdon A, Matesic G, Richard L, Vallat JM, Charnay P, Topilko P. Boundary Caps Give Rise to Neurogenic Stem Cells and Terminal Glia in the Skin. Stem Cell Reports 2015, 5: 278-90. PMID: 26212662, DOI: 10.1016/j.stemcr.2015.06.005.Peer-Reviewed Original Research
News
News
- September 03, 2023Source: New Haven Register
Yale autism study’s findings could help scientists develop treatment options
- August 10, 2023Source: YaleNews
Yale Scientists Reveal Two Paths to Autism in the Developing Brain
- May 04, 2023
April 2023 YCSC Faculty Development Fund Awardees Announced
- September 13, 2022
Yale Child Study Center Welcomes Five New Faculty & Staff Members