2015
Plasticity of Intact Rubral Projections Mediates Spontaneous Recovery of Function after Corticospinal Tract Injury
Siegel CS, Fink KL, Strittmatter SM, Cafferty WB. Plasticity of Intact Rubral Projections Mediates Spontaneous Recovery of Function after Corticospinal Tract Injury. Journal Of Neuroscience 2015, 35: 1443-1457. PMID: 25632122, PMCID: PMC4308593, DOI: 10.1523/jneurosci.3713-14.2015.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDesigner DrugsFunctional LateralityGene Expression RegulationGlial Fibrillary Acidic ProteinLocomotionMaleMiceMice, Inbred C57BLMice, TransgenicMuscle StrengthMyelin ProteinsNeuronal PlasticityNogo ProteinsPsychomotor DisordersPyramidal TractsRaphe NucleiRecovery of FunctionSpinal Cord InjuriesStereotyped BehaviorTime FactorsConceptsSpinal cord injurySpontaneous functional recoveryFunctional recoverySpontaneous recoveryIncomplete spinal cord injuryCorticospinal tract lesionsWeeks of lesionCorticospinal tract injuryNogo receptor 1Nucleus raphe magnusTract injuryRubrospinal projectionsTract lesionsCord injuryRaphe magnusCircuit rearrangementsAdult CNSCircuit plasticityLocomotor functionAdult micePharmacogenetic toolsRed nucleusRubral projectionReceptor 1Extensive sprouting
2013
Anatomical Plasticity of Adult Brain Is Titrated by Nogo Receptor 1
Akbik FV, Bhagat SM, Patel PR, Cafferty WB, Strittmatter SM. Anatomical Plasticity of Adult Brain Is Titrated by Nogo Receptor 1. Neuron 2013, 77: 859-866. PMID: 23473316, PMCID: PMC3594793, DOI: 10.1016/j.neuron.2012.12.027.Peer-Reviewed Original ResearchConceptsNgr1-/- miceNogo receptor 1Somatosensory cortexReceptor 1Adult cerebral cortexDendritic spine turnoverDendritic spine dynamicsAnatomical plasticityCerebral cortexControl miceSpine turnoverAxonal varicositiesWhisker removalAdult brainDendritic spinesSpine dynamicsNull miceAge 26Synaptic turnoverAnatomical connectivityConditional deletionMiceLower set pointNgR1Cortex
2011
Recovery from chronic spinal cord contusion after nogo receptor intervention
Wang X, Duffy P, McGee AW, Hasan O, Gould G, Tu N, Harel NY, Huang Y, Carson RE, Weinzimmer D, Ropchan J, Benowitz LI, Cafferty WB, Strittmatter SM. Recovery from chronic spinal cord contusion after nogo receptor intervention. Annals Of Neurology 2011, 70: 805-821. PMID: 22162062, PMCID: PMC3238798, DOI: 10.1002/ana.22527.Peer-Reviewed Original ResearchConceptsChronic spinal cord injurySpinal cord injuryContusion injuryCord injurySpinal cord contusion injuryCentral nervous system injuryBresnahan locomotor scoresOpen-field BassoSpinal hemisection injuryWeight-bearing statusSpinal cord contusionMonths of treatmentNervous system injuryMyelin-derived inhibitorCaudal spinal cordPositron emission tomographyNgR1 pathwayRaphespinal axonsSpinal contusionCord contusionHemisection injuryFunctional recoveryLocomotor scoresSystem injuryControl ratsMyelin associated inhibitors: A link between injury-induced and experience-dependent plasticity
Akbik F, Cafferty WB, Strittmatter SM. Myelin associated inhibitors: A link between injury-induced and experience-dependent plasticity. Experimental Neurology 2011, 235: 43-52. PMID: 21699896, PMCID: PMC3189418, DOI: 10.1016/j.expneurol.2011.06.006.Peer-Reviewed Original ResearchConceptsExperience-dependent plasticityAnatomical rearrangementsNogo-66 receptor 1Spinal cord injuryNeurologic recoveryFunctional recoveryInciting stimulusCNS injuryCord injuryAxonal regenerationAdult CNSInjury studiesAnimal modelsReceptor 1Common receptorPaired-ImmunoglobulinMyelinInhibitorsInjuryAnatomical growthCNSReceptorsWide spectrumExtracellular matrixGrowth inhibitor
2010
MAG and OMgp Synergize with Nogo-A to Restrict Axonal Growth and Neurological Recovery after Spinal Cord Trauma
Cafferty WB, Duffy P, Huebner E, Strittmatter SM. MAG and OMgp Synergize with Nogo-A to Restrict Axonal Growth and Neurological Recovery after Spinal Cord Trauma. Journal Of Neuroscience 2010, 30: 6825-6837. PMID: 20484625, PMCID: PMC2883258, DOI: 10.1523/jneurosci.6239-09.2010.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsBiotinCells, CulturedDextransDisease Models, AnimalFemaleFunctional LateralityGanglia, SpinalGPI-Linked ProteinsMaleMiceMice, Inbred C57BLMice, KnockoutMutationMyelin ProteinsMyelin-Associated GlycoproteinMyelin-Oligodendrocyte GlycoproteinNerve Tissue ProteinsNeuronsNogo ProteinsPyramidal TractsReceptors, Cell SurfaceReceptors, SerotoninRecovery of FunctionSpinal Cord InjuriesConceptsAxonal growthSpinal Cord Injury StudyMutant miceGreater axonal growthGreater behavioral recoverySpinal cord traumaWild-type miceAxonal growth inhibitionHeterozygous mutant miceDeficient myelinNeurological recoveryCNS damageTriple-mutant miceBehavioral recoveryCord traumaFunctional recoveryNeurological functionMyelin inhibitorsAxonal regrowthReceptor mechanismsInjury studiesMyelin inhibitionDecoy receptorOptimal chanceMice
2009
Rho-Associated Kinase II (ROCKII) Limits Axonal Growth after Trauma within the Adult Mouse Spinal Cord
Duffy P, Schmandke A, Schmandke A, Sigworth J, Narumiya S, Cafferty WB, Strittmatter SM. Rho-Associated Kinase II (ROCKII) Limits Axonal Growth after Trauma within the Adult Mouse Spinal Cord. Journal Of Neuroscience 2009, 29: 15266-15276. PMID: 19955379, PMCID: PMC2855556, DOI: 10.1523/jneurosci.4650-09.2009.Peer-Reviewed Original ResearchMeSH KeywordsAmidesAnalysis of VarianceAnimalsAxonsBehavior, AnimalBrain InjuriesCA1 Region, HippocampalCells, CulturedCholera ToxinEnzyme InhibitorsGanglia, SpinalGene Expression RegulationMedian NeuropathyMiceMice, Inbred C57BLMice, KnockoutMyelin ProteinsNerve RegenerationNeuronsNogo ProteinsPyridinesReceptors, Calcitonin Gene-Related PeptideRhizotomyRho-Associated KinasesSpinal Cord InjuriesTime FactorsVersicansConceptsSpinal cordCNS traumaFunctional recoveryBasso Mouse Scale scoresSpinal Cord Injury StudyAxonal growthDorsal root entry zoneDorsal root ganglion neuronsAdult mouse spinal cordAxonal growth inhibitorsSpinal cord hemisectionRoot entry zoneSpinal cord injuryCaudal spinal cordMouse spinal cordDorsal hemisectionRaphespinal axonsDorsal rhizotomyCrush injuryCord hemisectionCorticospinal axonsChondroitin sulfate proteoglycanCord injuryGanglion neuronsInjury paradigms
2007
Response to Correspondence: Kim et al., “Axon Regeneration in Young Adult Mice Lacking Nogo-A/B.” Neuron 38, 187–199
Cafferty WB, Kim JE, Lee JK, Strittmatter SM. Response to Correspondence: Kim et al., “Axon Regeneration in Young Adult Mice Lacking Nogo-A/B.” Neuron 38, 187–199. Neuron 2007, 54: 195-199. PMID: 17442242, PMCID: PMC2848952, DOI: 10.1016/j.neuron.2007.04.005.Peer-Reviewed Original Research
2006
The Nogo–Nogo Receptor Pathway Limits a Spectrum of Adult CNS Axonal Growth
Cafferty WB, Strittmatter SM. The Nogo–Nogo Receptor Pathway Limits a Spectrum of Adult CNS Axonal Growth. Journal Of Neuroscience 2006, 26: 12242-12250. PMID: 17122049, PMCID: PMC2848954, DOI: 10.1523/jneurosci.3827-06.2006.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsAxonsBehavior, AnimalCalcitonin Gene-Related PeptideCentral Nervous SystemFunctional LateralityGlial Fibrillary Acidic ProteinMiceMice, Inbred C57BLMice, KnockoutMyelin Basic ProteinMyelin ProteinsNogo ProteinsProtein Kinase CPsychomotor PerformancePyramidal TractsReceptors, PeptideSignal TransductionConceptsAxonal growthCST regenerationSpinal cord dorsal hemisectionCervical gray matterRole of NogoCorticospinal tract axonsNogo-66 receptorVivo pharmacological studiesFine motor skillsDorsal hemisectionAffected forelimbCST axonsLesion modelUnilateral pyramidotomyGray matterPharmacological studiesReceptor pathwayNogoConflicting resultsMiceMotor skillsAxonsDifferent tractsGenetic assessmentPyramidotomy