2013
Conformational landscapes of DNA polymerase I and mutator derivatives establish fidelity checkpoints for nucleotide insertion
Hohlbein J, Aigrain L, Craggs T, Bermek O, Potapova O, Shoolizadeh P, Grindley N, Joyce C, Kapanidis A. Conformational landscapes of DNA polymerase I and mutator derivatives establish fidelity checkpoints for nucleotide insertion. Nature Communications 2013, 4: 2131. PMID: 23831915, PMCID: PMC3715850, DOI: 10.1038/ncomms3131.Peer-Reviewed Original ResearchConceptsClosed conformationDNA polymerase IIncorrect nucleotidesPolymerase ITernary complexSingle-molecule FRETActive site side chainsNucleotide selectionMutator phenotypeFidelity checkpointPrimary checkpointPhosphoryl transferFidelity mutantsConformational changesConformational landscapeDNA polymeraseNucleotide insertionConformational transitionDNA synthesisFRET valuesNucleotidesFree energy landscapeReduced affinityCheckpointConformation
2007
Conformational Changes during Normal and Error-Prone Incorporation of Nucleotides by a Y-Family DNA Polymerase Detected by 2-Aminopurine Fluorescence †
DeLucia A, Grindley N, Joyce C. Conformational Changes during Normal and Error-Prone Incorporation of Nucleotides by a Y-Family DNA Polymerase Detected by 2-Aminopurine Fluorescence †. Biochemistry 2007, 46: 10790-10803. PMID: 17725324, DOI: 10.1021/bi7006756.Peer-Reviewed Original Research2-AminopurineArchaeal ProteinsBase Pair MismatchBase SequenceDeoxyribonucleotidesDNA Polymerase betaDNA Polymerase IDNA RepairDNA ReplicationDNA-Directed DNA PolymeraseFluorescent DyesFrameshift MutationModels, MolecularMolecular Sequence DataMutagenesis, InsertionalNucleic Acid ConformationSpectrometry, FluorescenceSubstrate SpecificitySulfolobusTemplates, Genetic
2005
DNA Polymerase Catalysis in the Absence of Watson−Crick Hydrogen Bonds: Analysis by Single-Turnover Kinetics †
Potapova O, Chan C, DeLucia A, Helquist S, Kool E, Grindley N, Joyce C. DNA Polymerase Catalysis in the Absence of Watson−Crick Hydrogen Bonds: Analysis by Single-Turnover Kinetics †. Biochemistry 2005, 45: 890-898. PMID: 16411765, PMCID: PMC2567902, DOI: 10.1021/bi051792i.Peer-Reviewed Original Research
2003
The Architecture of the γδ Resolvase Crossover Site Synaptic Complex Revealed by Using Constrained DNA Substrates
Leschziner A, Grindley N. The Architecture of the γδ Resolvase Crossover Site Synaptic Complex Revealed by Using Constrained DNA Substrates. Molecular Cell 2003, 12: 775-781. PMID: 14527421, DOI: 10.1016/s1097-2765(03)00351-4.Peer-Reviewed Original ResearchInteraction of DNA Polymerase I (Klenow Fragment) with the Single-Stranded Template beyond the Site of Synthesis †
Turner R, Grindley N, Joyce C. Interaction of DNA Polymerase I (Klenow Fragment) with the Single-Stranded Template beyond the Site of Synthesis †. Biochemistry 2003, 42: 2373-2385. PMID: 12600204, DOI: 10.1021/bi026566c.Peer-Reviewed Original Research
1990
The two functional domains of gamma delta resolvase act on the same recombination site: implications for the mechanism of strand exchange.
Dröge P, Hatfull G, Grindley N, Cozzarelli N. The two functional domains of gamma delta resolvase act on the same recombination site: implications for the mechanism of strand exchange. Proceedings Of The National Academy Of Sciences Of The United States Of America 1990, 87: 5336-5340. PMID: 2164677, PMCID: PMC54318, DOI: 10.1073/pnas.87.14.5336.Peer-Reviewed Original ResearchConceptsDNA-protein complexesRecombination sitesSite-specific recombinationGamma delta resolvaseDNA exchangeCatalytic domainStrand exchangeFunctional domainsResolvaseResolvase subunitsDNA strandsRes sitesSynaptic complexDNAStrand breakageRecombinationReunion eventDomainSitesComplexesSubunitsStrandsBreakageSynaptosomes
1986
Replicative and conservative transposition in bacteria
Derbyshire K, Grindley N. Replicative and conservative transposition in bacteria. Cell 1986, 47: 325-327. PMID: 3021339, DOI: 10.1016/0092-8674(86)90586-6.Peer-Reviewed Original Research
1985
Genetic mapping and DNA sequence analysis of mutations in the polA gene of Escherichia coli
Joyce C, Fujii D, Laks H, Hughes C, Grindley N. Genetic mapping and DNA sequence analysis of mutations in the polA gene of Escherichia coli. Journal Of Molecular Biology 1985, 186: 283-293. PMID: 3910840, DOI: 10.1016/0022-2836(85)90105-6.Peer-Reviewed Original ResearchConceptsDNA sequence analysisDNA polymerase IThree-dimensional structurePolymerase ISequence analysisPolA geneSingle-subunit enzymeEscherichia coliEnzyme-DNA interactionsGenetic mappingDeletion mutantsSubunit enzymeMutant formsPrimary sequenceMutational changesBacteriophage lambdaExcellent modelPolA mutantsPolA mutationEnzymatic behaviorMutantsMutationsGenesDNAColiTranspositional Recombination in Prokaryotes
Grindley N, Reed R. Transpositional Recombination in Prokaryotes. Annual Review Of Biochemistry 1985, 54: 863-896. PMID: 2992361, DOI: 10.1146/annurev.bi.54.070185.004243.Peer-Reviewed Original Research
1984
Replicative and conservative transpositional recombination of insertion sequences.
Weinert T, Derbyshire K, Hughson F, Grindley N. Replicative and conservative transpositional recombination of insertion sequences. Cold Spring Harbor Symposia On Quantitative Biology 1984, 49: 251-60. PMID: 6099240, DOI: 10.1101/sqb.1984.049.01.029.Peer-Reviewed Original Research
1976
Effects of different alleles of the E. coli K12 polA gene on the replication of non-transferring plasmids
Grindley N, Kelley W. Effects of different alleles of the E. coli K12 polA gene on the replication of non-transferring plasmids. Molecular Genetics And Genomics 1976, 143: 311-318. PMID: 765763, DOI: 10.1007/bf00269409.Peer-Reviewed Original Research