2019
Glia: A Gate Controlling Animal Behavior?
Wyart C, Prendergast A. Glia: A Gate Controlling Animal Behavior? Current Biology 2019, 29: r847-r850. PMID: 31505186, DOI: 10.1016/j.cub.2019.07.058.Peer-Reviewed Original ResearchRegulation of the apical extension morphogenesis tunes the mechanosensory response of microvilliated neurons
Desban L, Prendergast A, Roussel J, Rosello M, Geny D, Wyart C, Bardet PL. Regulation of the apical extension morphogenesis tunes the mechanosensory response of microvilliated neurons. PLOS Biology 2019, 17: e3000235. PMID: 31002663, PMCID: PMC6493769, DOI: 10.1371/journal.pbio.3000235.Peer-Reviewed Original ResearchConceptsRing of actinApical junctional complexApical extensionSensory cellsApical actin ringSensory cell typesInner ear sensory cellsTime-lapse imagingVivo time-lapse imagingZebrafish embryosMorphogenesisActin ringsCell typesHair bundlesMechanosensory responsesProtrusion elongationJunctional complexesActinTail bendingMolecular factorsCerebrospinal fluid-contacting neuronsApical attachmentCritical roleOsmolarity changesApical processes
2018
Pkd2l1 is required for mechanoception in cerebrospinal fluid-contacting neurons and maintenance of spine curvature
Sternberg JR, Prendergast AE, Brosse L, Cantaut-Belarif Y, Thouvenin O, Orts-Del’Immagine A, Castillo L, Djenoune L, Kurisu S, McDearmid JR, Bardet PL, Boccara C, Okamoto H, Delmas P, Wyart C. Pkd2l1 is required for mechanoception in cerebrospinal fluid-contacting neurons and maintenance of spine curvature. Nature Communications 2018, 9: 3804. PMID: 30228263, PMCID: PMC6143598, DOI: 10.1038/s41467-018-06225-x.Peer-Reviewed Original ResearchConceptsCentral canalCSF-cNsSpontaneous activityCSF flowCerebrospinal fluid-contacting neuronsSpine curvatureCSF-contacting neuronsCerebrospinal fluid flowSpinal cordIdiopathic scoliosisSingle-channel openingsCalcium activityPKD2L1 channelPKD2L1Mechanosensory cellsNeuronsCanalChannel openingMechanoceptionKyphosisCilia motilityCord
2017
The dual developmental origin of spinal cerebrospinal fluid-contacting neurons gives rise to distinct functional subtypes
Djenoune L, Desban L, Gomez J, Sternberg JR, Prendergast A, Langui D, Quan FB, Marnas H, Auer TO, Rio JP, Del Bene F, Bardet PL, Wyart C. The dual developmental origin of spinal cerebrospinal fluid-contacting neurons gives rise to distinct functional subtypes. Scientific Reports 2017, 7: 719. PMID: 28389647, PMCID: PMC5428266, DOI: 10.1038/s41598-017-00350-1.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, Genetically ModifiedAxonsBiomarkersCarrier ProteinsCell DifferentiationCerebrospinal FluidFluorescent Antibody TechniqueGanglia, SpinalHomozygoteMutationNeuronsSensory Receptor CellsSignal TransductionSpinal CordSpinal Nerve RootsTRPP Cation ChannelsZebrafishZebrafish ProteinsConceptsDual developmental originDevelopmental originsDistinct progenitor domainsApical extensionDistinct functional subtypesDifferent developmental originsCerebrospinal fluid-contacting neuronsTranscription factorsMechanical cuesZebrafish larvaeDistinct functionsProgenitor domainsCentral nervous systemCell typesDistinct cascadesFunctional populationsDifferent functional propertiesCSF-cNsNovel avenuesPKD2L1 channelFunctional subtypesSensory neuronsNeuronal targetsDistinct functional populationsSpecific markers
2016
CSF-contacting neurons regulate locomotion by relaying mechanical stimuli to spinal circuits
Böhm UL, Prendergast A, Djenoune L, Nunes Figueiredo S, Gomez J, Stokes C, Kaiser S, Suster M, Kawakami K, Charpentier M, Concordet JP, Rio JP, Del Bene F, Wyart C. CSF-contacting neurons regulate locomotion by relaying mechanical stimuli to spinal circuits. Nature Communications 2016, 7: 10866. PMID: 26946992, PMCID: PMC4786674, DOI: 10.1038/ncomms10866.Peer-Reviewed Original ResearchConceptsSpinal cordSpinal circuitsCentral pattern generatorCSF-cNsCerebrospinal fluid-contacting neuronsSpinal central pattern generatorVentral spinal cordLocomotor central pattern generatorCSF-contacting neuronsCentral canalSpinal bendingCordNeuronsMechanical stimuliMechanosensory organsOrgansSensory modalitiesAnimals
2012
Postembryonic neuronal addition in Zebrafish dorsal root ganglia is regulated by Notch signaling
McGraw HF, Snelson CD, Prendergast A, Suli A, Raible DW. Postembryonic neuronal addition in Zebrafish dorsal root ganglia is regulated by Notch signaling. Neural Development 2012, 7: 23. PMID: 22738203, PMCID: PMC3438120, DOI: 10.1186/1749-8104-7-23.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, Genetically ModifiedGanglia, SpinalGene Expression Regulation, DevelopmentalHomeodomain ProteinsIntracellular Signaling Peptides and ProteinsMembrane ProteinsNerve Tissue ProteinsNeural CrestNeurogenesisNeuronsReceptor, Notch1Signal TransductionZebrafishZebrafish ProteinsConceptsLarval developmentNotch signalingDorsal root gangliaTransgenic zebrafish lineNeural crest migrationLate larval developmentNeural crest cellsFate-mapping experimentsNeuronal additionVertebrate embryosZebrafish lineCellular regulationCrest migrationProgenitor populationsCrest cellsDRG formationRoot gangliaNew neuronsConditional inhibitionProgenitor cellsSignalingDRG neuronsSensory neuronsPopulation of residentsNeurons