2023
Primary complex motor stereotypies are associated with de novo damaging DNA coding mutations that identify KDM5B as a risk gene
Fernandez T, Williams Z, Kline T, Rajendran S, Augustine F, Wright N, Sullivan C, Olfson E, Abdallah S, Liu W, Hoffman E, Gupta A, Singer H. Primary complex motor stereotypies are associated with de novo damaging DNA coding mutations that identify KDM5B as a risk gene. PLOS ONE 2023, 18: e0291978. PMID: 37788244, PMCID: PMC10547198, DOI: 10.1371/journal.pone.0291978.Peer-Reviewed Original ResearchConceptsRisk genesDe novo damaging variantsGene expression patternsWhole-exome DNA sequencingMid-fetal developmentAdditional risk genesHigh-confidence risk genesParent-child triosGene OntologyCell signalingExpression patternsCalcium ion transportFunctional convergenceCell cycleDamaging variantsGenesDNA sequencingDe novoASD probandsGenetic etiologyBiological mechanismsSequencingDNANetwork analysisIon transport
2014
Rare deleterious mutations of the gene EFR3A in autism spectrum disorders
Gupta AR, Pirruccello M, Cheng F, Kang HJ, Fernandez TV, Baskin JM, Choi M, Liu L, Ercan-Sencicek AG, Murdoch JD, Klei L, Neale BM, Franjic D, Daly MJ, Lifton RP, De Camilli P, Zhao H, Šestan N, State MW. Rare deleterious mutations of the gene EFR3A in autism spectrum disorders. Molecular Autism 2014, 5: 31. PMID: 24860643, PMCID: PMC4032628, DOI: 10.1186/2040-2392-5-31.Peer-Reviewed Original ResearchExperiment-wide significance thresholdDeleterious mutationsModules of genesNovel candidate genesRare deleterious mutationsCase/control association studySignificance thresholdASD-related genesProtein complexesDe novo mutationsCandidate genesVariety of functionsExpression patternsWhole-exome dataProtein structureAssociation studiesSequencing studiesNonsynonymous mutationsDeep resequencingControl association studySplice site variantConservation measuresSite variantsGenesHuman fetal brain development