2023
Spatial epigenome–transcriptome co-profiling of mammalian tissues
Zhang D, Deng Y, Kukanja P, Agirre E, Bartosovic M, Dong M, Ma C, Ma S, Su G, Bao S, Liu Y, Xiao Y, Rosoklija G, Dwork A, Mann J, Leong K, Boldrini M, Wang L, Haeussler M, Raphael B, Kluger Y, Castelo-Branco G, Fan R. Spatial epigenome–transcriptome co-profiling of mammalian tissues. Nature 2023, 616: 113-122. PMID: 36922587, PMCID: PMC10076218, DOI: 10.1038/s41586-023-05795-1.Peer-Reviewed Original ResearchConceptsGene expressionSingle-cell resolutionChromatin accessibilityJoint profilingHistone modificationsGene regulationCellular statesEpigenetic mechanismsCentral dogmaSpatial transcriptomeTranscriptional phenotypeCell statesOmics informationSpatial transcriptomicsEpigenetic primingMammalian tissuesEpigenomeMolecular biologyTissue architectureCell dynamicsMechanistic relationshipDifferential rolesNew insightsMouse brainProfilingIntegrated transcriptome and trajectory analysis of cutaneous T-cell lymphoma identifies putative precancer populations
Ren J, Qu R, Rahman N, Lewis J, King A, Liao X, Mirza F, Carlson K, Huang Y, Gigante S, Evans B, Rajendran B, Xu S, Wang G, Foss F, Damsky W, Kluger Y, Krishnaswamy S, Girardi M. Integrated transcriptome and trajectory analysis of cutaneous T-cell lymphoma identifies putative precancer populations. Blood Advances 2023, 7: 445-457. PMID: 35947128, PMCID: PMC9979716, DOI: 10.1182/bloodadvances.2022008168.Peer-Reviewed Original ResearchMeSH KeywordsCD4-Positive T-LymphocytesHumansLymphoma, T-Cell, CutaneousReceptors, Antigen, T-CellSkin NeoplasmsTranscriptomeConceptsCutaneous T-cell lymphomaMalignant CTCL cellsDiverse transcriptomic profilesT cellsSingle-cell RNACTCL cellsDevelopment of CTCLIntegrated transcriptomeT-cell receptor sequencingT cell exhaustion phenotypeCommon antigenic stimulusPeripheral blood CD4Transcriptomic profilesGene expressionT-cell lymphomaIntegrative analysisPotential therapeutic targetProliferation advantageLimited diversityBlood CD4Blood involvementMutation levelsExhaustion phenotypeWorse prognosisAntigenic stimulus
2022
Comprehensive visualization of cell–cell interactions in single-cell and spatial transcriptomics with NICHES
Raredon M, Yang J, Kothapalli N, Lewis W, Kaminski N, Niklason L, Kluger Y. Comprehensive visualization of cell–cell interactions in single-cell and spatial transcriptomics with NICHES. Bioinformatics 2022, 39: btac775. PMID: 36458905, PMCID: PMC9825783, DOI: 10.1093/bioinformatics/btac775.Peer-Reviewed Original ResearchConceptsCell-cell interactionsCell-cell signalingSingle-cell resolutionSingle-cell dataLocal cellular microenvironmentSingle-cell levelSpatial transcriptomics dataCell clustersExtracellular signalingTranscriptomic dataGene expression valuesSpatial transcriptomicsSignaling mechanismCellular microenvironmentNicheExpression valuesSupplementary dataSignalingTranscriptomicsComprehensive visualizationBioinformaticsInteraction
2021
Detection of differentially abundant cell subpopulations in scRNA-seq data
Zhao J, Jaffe A, Li H, Lindenbaum O, Sefik E, Jackson R, Cheng X, Flavell RA, Kluger Y. Detection of differentially abundant cell subpopulations in scRNA-seq data. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2100293118. PMID: 34001664, PMCID: PMC8179149, DOI: 10.1073/pnas.2100293118.Peer-Reviewed Original ResearchMeSH KeywordsAgingB-LymphocytesBrainCell LineageCOVID-19CytokinesDatasets as TopicDendritic CellsGene Expression ProfilingGene Expression RegulationHigh-Throughput Nucleotide SequencingHumansMelanomaMonocytesPhenotypeRNA, Small CytoplasmicSARS-CoV-2Severity of Illness IndexSingle-Cell AnalysisSkin NeoplasmsT-LymphocytesTranscriptomeConceptsDA subpopulationsIll COVID-19 patientsImmune checkpoint therapyCOVID-19 patientsSingle-cell RNA sequencing analysisCheckpoint therapyBrain tissueCell subpopulationsRNA sequencing analysisTime pointsSubpopulationsDiseased individualsDistinct phenotypesOriginal studyCell typesAbundant subpopulationSequencing analysisCellsDA measuresPhenotypeImportant differencesNonrespondersPatientsTherapy