2016
Reorganization of Intact Descending Motor Circuits to Replace Lost Connections After Injury
Fink KL, Cafferty WB. Reorganization of Intact Descending Motor Circuits to Replace Lost Connections After Injury. Neurotherapeutics 2016, 13: 370-381. PMID: 26846379, PMCID: PMC4824020, DOI: 10.1007/s13311-016-0422-x.Peer-Reviewed Original ResearchConceptsSpinal cord injuryCentral nervous systemMotor pathwaysFunctional recoveryMotor functionMotor circuitsIntact circuitsIncomplete spinal cord injuryPartial spinal cord injuryAdult central nervous systemCorticospinal tract lesionsLimited spontaneous recoveryPermanent functional impairmentSpontaneous functional recoveryExperimental rodent modelsIntrinsic growth capacityRestoration of functionFine motor behaviorRaphespinal tractsDenervated sideTract lesionsCord injuryRubrospinal tractReticulospinal tractCNS neurons
2015
Comprehensive Corticospinal Labeling with mu-crystallin Transgene Reveals Axon Regeneration after Spinal Cord Trauma in ngr1−/− Mice
Fink KL, Strittmatter SM, Cafferty WB. Comprehensive Corticospinal Labeling with mu-crystallin Transgene Reveals Axon Regeneration after Spinal Cord Trauma in ngr1−/− Mice. Journal Of Neuroscience 2015, 35: 15403-15418. PMID: 26586827, PMCID: PMC4649010, DOI: 10.1523/jneurosci.3165-15.2015.Peer-Reviewed Original ResearchMeSH KeywordsAmidinesAnalysis of VarianceAnimalsAxonsBiotinCrystallinsDextransDisease Models, AnimalFunctional LateralityGene Expression RegulationGlial Fibrillary Acidic ProteinGPI-Linked ProteinsLuminescent ProteinsMiceMice, Inbred C57BLMice, TransgenicMu-CrystallinsMyelin ProteinsNerve RegenerationNogo Receptor 1Pyramidal TractsReceptors, Cell SurfaceRecovery of FunctionSpinal Cord InjuriesConceptsCorticospinal tractCST axonsTransgenic miceMotor tractsDextran amineFunctional deficitsSpinal cordAxon regenerationSpinal Cord Injury StudySpontaneous axon regenerationSpinal cord traumaNogo receptor 1Permanent functional deficitsPersistent functional deficitsBilateral pyramidotomyDorsal hemisectionMidthoracic cordCord traumaMotor pathwaysAdult CNSCST regenerationInjury studiesLesion siteRegenerating fibersNeural repairGene-Silencing Screen for Mammalian Axon Regeneration Identifies Inpp5f (Sac2) as an Endogenous Suppressor of Repair after Spinal Cord Injury
Zou Y, Stagi M, Wang X, Yigitkanli K, Siegel CS, Nakatsu F, Cafferty WB, Strittmatter SM. Gene-Silencing Screen for Mammalian Axon Regeneration Identifies Inpp5f (Sac2) as an Endogenous Suppressor of Repair after Spinal Cord Injury. Journal Of Neuroscience 2015, 35: 10429-10439. PMID: 26203138, PMCID: PMC4510284, DOI: 10.1523/jneurosci.1718-15.2015.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsDisease Models, AnimalGene Knockdown TechniquesImmunohistochemistryInositol Polyphosphate 5-PhosphatasesMiceMice, Inbred C57BLMice, KnockoutNerve RegenerationPhosphoric Monoester HydrolasesRecovery of FunctionReverse Transcriptase Polymerase Chain ReactionSpinal Cord InjuriesConceptsSpinal cord injuryCord injuryEndogenous suppressorAxon regenerationNonoverlapping substrate specificityGenome-wide scaleHigh-throughput functional screensFunctional recoveryAxonal regenerationCNS axon repairSpinal cord injury researchDorsal hemisection injuryMammalian genesPI3K/AKT/mTOR pathwayCNS axon growthAKT/mTOR pathwayLipid phosphataseCorticospinal tract axonsCNS axon regenerationAdult mammalian CNSFunctional screenSubstrate specificityNovel suppressorShRNA resultsINPP5FPlasticity of Intact Rubral Projections Mediates Spontaneous Recovery of Function after Corticospinal Tract Injury
Siegel CS, Fink KL, Strittmatter SM, Cafferty WB. Plasticity of Intact Rubral Projections Mediates Spontaneous Recovery of Function after Corticospinal Tract Injury. Journal Of Neuroscience 2015, 35: 1443-1457. PMID: 25632122, PMCID: PMC4308593, DOI: 10.1523/jneurosci.3713-14.2015.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDesigner DrugsFunctional LateralityGene Expression RegulationGlial Fibrillary Acidic ProteinLocomotionMaleMiceMice, Inbred C57BLMice, TransgenicMuscle StrengthMyelin ProteinsNeuronal PlasticityNogo ProteinsPsychomotor DisordersPyramidal TractsRaphe NucleiRecovery of FunctionSpinal Cord InjuriesStereotyped BehaviorTime FactorsConceptsSpinal cord injurySpontaneous functional recoveryFunctional recoverySpontaneous recoveryIncomplete spinal cord injuryCorticospinal tract lesionsWeeks of lesionCorticospinal tract injuryNogo receptor 1Nucleus raphe magnusTract injuryRubrospinal projectionsTract lesionsCord injuryRaphe magnusCircuit rearrangementsAdult CNSCircuit plasticityLocomotor functionAdult micePharmacogenetic toolsRed nucleusRubral projectionReceptor 1Extensive sprouting
2014
Human NgR-Fc Decoy Protein via Lumbar Intrathecal Bolus Administration Enhances Recovery from Rat Spinal Cord Contusion
Wang X, Yigitkanli K, Kim CY, Sekine-Konno T, Wirak D, Frieden E, Bhargava A, Maynard G, Cafferty WB, Strittmatter SM. Human NgR-Fc Decoy Protein via Lumbar Intrathecal Bolus Administration Enhances Recovery from Rat Spinal Cord Contusion. Journal Of Neurotrauma 2014, 31: 1955-1966. PMID: 24964223, PMCID: PMC4245872, DOI: 10.1089/neu.2014.3355.Peer-Reviewed Original ResearchConceptsSpinal cord injuryTraumatic spinal cord injurySpinal cord contusionNeurological recoveryCord contusionRat spinal cord contusionSpinal contusion injuryLumbar intrathecal spaceLumbar spinal cordContinuous intracerebroventricular infusionRodent SCI modelsPercentage of ratsRaphespinal axonsContusion injuryAdministration regimenSCI modelContinuous infusionCord injuryIntracerebroventricular infusionIntrathecal spaceSpinal cordPreclinical modelsEffective treatmentWalking tasksClinical testingDiffusion Tensor Imaging as a Predictor of Locomotor Function after Experimental Spinal Cord Injury and Recovery
Kelley BJ, Harel NY, Kim CY, Papademetris X, Coman D, Wang X, Hasan O, Kaufman A, Globinsky R, Staib LH, Cafferty WB, Hyder F, Strittmatter SM. Diffusion Tensor Imaging as a Predictor of Locomotor Function after Experimental Spinal Cord Injury and Recovery. Journal Of Neurotrauma 2014, 31: 1362-1373. PMID: 24779685, PMCID: PMC4120934, DOI: 10.1089/neu.2013.3238.Peer-Reviewed Original ResearchConceptsSpinal cord injuryDiffusion tensor imagingCord injuryAxonal integrityLocomotor functionExperimental spinal cord injuryTraumatic spinal cord injuryFemale Sprague-Dawley ratsTensor imagingFractional anisotropyFunctional recovery assessmentSpinal cord contusionLimited functional recoveryLong-term disabilityQuantitative diffusion tensor imagingRodent SCI modelsSprague-Dawley ratsSpinal cord morphologyWhite matter pathologyCaudal spinal cordWhite matter integrityInjury epicenterMidthoracic laminectomyCord contusionPrimary outcome
2013
Multimodal exercises simultaneously stimulating cortical and brainstem pathways after unilateral corticospinal lesion
Harel NY, Yigitkanli K, Fu Y, Cafferty WB, Strittmatter SM. Multimodal exercises simultaneously stimulating cortical and brainstem pathways after unilateral corticospinal lesion. Brain Research 2013, 1538: 17-25. PMID: 24055330, PMCID: PMC3873870, DOI: 10.1016/j.brainres.2013.07.012.Peer-Reviewed Original ResearchConceptsBrainstem pathwaysMultimodal exerciseCorticospinal tractTraining groupContext of injuryCST pathwayAnatomical outcomesCST injuryPostural exercisesCorticospinal lesionsCollateral sproutingCST lesionElectrophysiological assessmentSpinal cordPhysical exerciseGait kinematicsLimb performanceSynaptic strengthLesionsSubcortical circuitsFiber densityMiceInjuryFurther studiesExerciseAnatomical Plasticity of Adult Brain Is Titrated by Nogo Receptor 1
Akbik FV, Bhagat SM, Patel PR, Cafferty WB, Strittmatter SM. Anatomical Plasticity of Adult Brain Is Titrated by Nogo Receptor 1. Neuron 2013, 77: 859-866. PMID: 23473316, PMCID: PMC3594793, DOI: 10.1016/j.neuron.2012.12.027.Peer-Reviewed Original ResearchConceptsNgr1-/- miceNogo receptor 1Somatosensory cortexReceptor 1Adult cerebral cortexDendritic spine turnoverDendritic spine dynamicsAnatomical plasticityCerebral cortexControl miceSpine turnoverAxonal varicositiesWhisker removalAdult brainDendritic spinesSpine dynamicsNull miceAge 26Synaptic turnoverAnatomical connectivityConditional deletionMiceLower set pointNgR1Cortex
2012
Axonal regeneration induced by blockade of glial inhibitors coupled with activation of intrinsic neuronal growth pathways
Wang X, Hasan O, Arzeno A, Benowitz LI, Cafferty WB, Strittmatter SM. Axonal regeneration induced by blockade of glial inhibitors coupled with activation of intrinsic neuronal growth pathways. Experimental Neurology 2012, 237: 55-69. PMID: 22728374, PMCID: PMC3418451, DOI: 10.1016/j.expneurol.2012.06.009.Peer-Reviewed Original ResearchConceptsRetinal ganglion cellsAxonal regenerationPharmacological approachesCrush injuryChondroitin sulfate proteoglycanInjury siteNeural repairOptic nerve crush injuryDorsal root ganglion neuronsNgr1-/- miceNerve crush injurySciatic nerve axotomySpinal cord injury sitePrimary afferent fibersEffective pharmacological approachSpinal cord injuryAdult mammalian neuronsIntrinsic growth potentialGlial inhibitorsTriple therapyNerve axotomyViral gene therapyWT miceAfferent fibersCNS injuryPlexinA2 limits recovery from corticospinal axotomy by mediating oligodendrocyte-derived Sema6A growth inhibition
Shim SO, Cafferty WB, Schmidt EC, Kim BG, Fujisawa H, Strittmatter SM. PlexinA2 limits recovery from corticospinal axotomy by mediating oligodendrocyte-derived Sema6A growth inhibition. Molecular And Cellular Neuroscience 2012, 50: 193-200. PMID: 22564823, PMCID: PMC3383336, DOI: 10.1016/j.mcn.2012.04.007.Peer-Reviewed Original ResearchConceptsAxonal growthSpinal cordPellet retrieval taskCervical spinal cordWild-type miceContralateral gray matterAxon guidance cuesSevered fibersSprouted fibersAxonal sproutingCorticofugal projectionsFunctional recoveryBehavioral recoveryCNS injuryImpaired forelimbClass 3 semaphorinsCorticospinal fibersCorticospinal tractMedullary pyramidsSynaptic punctaInhibitor receptorsType miceUnilateral pyramidotomyNeuron inhibitionAdult traumaMyelin-derived ephrinB3 restricts axonal regeneration and recovery after adult CNS injury
Duffy P, Wang X, Siegel CS, Tu N, Henkemeyer M, Cafferty WB, Strittmatter SM. Myelin-derived ephrinB3 restricts axonal regeneration and recovery after adult CNS injury. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 5063-5068. PMID: 22411787, PMCID: PMC3323955, DOI: 10.1073/pnas.1113953109.Peer-Reviewed Original ResearchConceptsAxonal regenerationAxonal growthAdult mammalian central nervous systemAdult CNS injuryDorsal hemisection injurySpinal cord injuryMammalian central nervous systemWild-type miceCentral nervous systemCaudal spinal cordAxonal guidance cuesAxonal growth inhibitionLater time pointsGreater spasticityCNS traumaHemisection injuryCrush siteOptic nerveNeurological functionCNS injuryCord injuryTransection modelGrowth restrictionSpinal cordTraumatic injury
2011
Recovery from chronic spinal cord contusion after nogo receptor intervention
Wang X, Duffy P, McGee AW, Hasan O, Gould G, Tu N, Harel NY, Huang Y, Carson RE, Weinzimmer D, Ropchan J, Benowitz LI, Cafferty WB, Strittmatter SM. Recovery from chronic spinal cord contusion after nogo receptor intervention. Annals Of Neurology 2011, 70: 805-821. PMID: 22162062, PMCID: PMC3238798, DOI: 10.1002/ana.22527.Peer-Reviewed Original ResearchConceptsChronic spinal cord injurySpinal cord injuryContusion injuryCord injurySpinal cord contusion injuryCentral nervous system injuryBresnahan locomotor scoresOpen-field BassoSpinal hemisection injuryWeight-bearing statusSpinal cord contusionMonths of treatmentNervous system injuryMyelin-derived inhibitorCaudal spinal cordPositron emission tomographyNgR1 pathwayRaphespinal axonsSpinal contusionCord contusionHemisection injuryFunctional recoveryLocomotor scoresSystem injuryControl ratsMyelin associated inhibitors: A link between injury-induced and experience-dependent plasticity
Akbik F, Cafferty WB, Strittmatter SM. Myelin associated inhibitors: A link between injury-induced and experience-dependent plasticity. Experimental Neurology 2011, 235: 43-52. PMID: 21699896, PMCID: PMC3189418, DOI: 10.1016/j.expneurol.2011.06.006.Peer-Reviewed Original ResearchConceptsExperience-dependent plasticityAnatomical rearrangementsNogo-66 receptor 1Spinal cord injuryNeurologic recoveryFunctional recoveryInciting stimulusCNS injuryCord injuryAxonal regenerationAdult CNSInjury studiesAnimal modelsReceptor 1Common receptorPaired-ImmunoglobulinMyelinInhibitorsInjuryAnatomical growthCNSReceptorsWide spectrumExtracellular matrixGrowth inhibitor
2010
MAG and OMgp Synergize with Nogo-A to Restrict Axonal Growth and Neurological Recovery after Spinal Cord Trauma
Cafferty WB, Duffy P, Huebner E, Strittmatter SM. MAG and OMgp Synergize with Nogo-A to Restrict Axonal Growth and Neurological Recovery after Spinal Cord Trauma. Journal Of Neuroscience 2010, 30: 6825-6837. PMID: 20484625, PMCID: PMC2883258, DOI: 10.1523/jneurosci.6239-09.2010.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsBiotinCells, CulturedDextransDisease Models, AnimalFemaleFunctional LateralityGanglia, SpinalGPI-Linked ProteinsMaleMiceMice, Inbred C57BLMice, KnockoutMutationMyelin ProteinsMyelin-Associated GlycoproteinMyelin-Oligodendrocyte GlycoproteinNerve Tissue ProteinsNeuronsNogo ProteinsPyramidal TractsReceptors, Cell SurfaceReceptors, SerotoninRecovery of FunctionSpinal Cord InjuriesConceptsAxonal growthSpinal Cord Injury StudyMutant miceGreater axonal growthGreater behavioral recoverySpinal cord traumaWild-type miceAxonal growth inhibitionHeterozygous mutant miceDeficient myelinNeurological recoveryCNS damageTriple-mutant miceBehavioral recoveryCord traumaFunctional recoveryNeurological functionMyelin inhibitorsAxonal regrowthReceptor mechanismsInjury studiesMyelin inhibitionDecoy receptorOptimal chanceMice
2009
Rho-Associated Kinase II (ROCKII) Limits Axonal Growth after Trauma within the Adult Mouse Spinal Cord
Duffy P, Schmandke A, Schmandke A, Sigworth J, Narumiya S, Cafferty WB, Strittmatter SM. Rho-Associated Kinase II (ROCKII) Limits Axonal Growth after Trauma within the Adult Mouse Spinal Cord. Journal Of Neuroscience 2009, 29: 15266-15276. PMID: 19955379, PMCID: PMC2855556, DOI: 10.1523/jneurosci.4650-09.2009.Peer-Reviewed Original ResearchMeSH KeywordsAmidesAnalysis of VarianceAnimalsAxonsBehavior, AnimalBrain InjuriesCA1 Region, HippocampalCells, CulturedCholera ToxinEnzyme InhibitorsGanglia, SpinalGene Expression RegulationMedian NeuropathyMiceMice, Inbred C57BLMice, KnockoutMyelin ProteinsNerve RegenerationNeuronsNogo ProteinsPyridinesReceptors, Calcitonin Gene-Related PeptideRhizotomyRho-Associated KinasesSpinal Cord InjuriesTime FactorsVersicansConceptsSpinal cordCNS traumaFunctional recoveryBasso Mouse Scale scoresSpinal Cord Injury StudyAxonal growthDorsal root entry zoneDorsal root ganglion neuronsAdult mouse spinal cordAxonal growth inhibitorsSpinal cord hemisectionRoot entry zoneSpinal cord injuryCaudal spinal cordMouse spinal cordDorsal hemisectionRaphespinal axonsDorsal rhizotomyCrush injuryCord hemisectionCorticospinal axonsChondroitin sulfate proteoglycanCord injuryGanglion neuronsInjury paradigms
2008
Chondroitinase ABC-Mediated Plasticity of Spinal Sensory Function
Cafferty WB, Bradbury EJ, Lidierth M, Jones M, Duffy PJ, Pezet S, McMahon SB. Chondroitinase ABC-Mediated Plasticity of Spinal Sensory Function. Journal Of Neuroscience 2008, 28: 11998-12009. PMID: 19005065, PMCID: PMC3844838, DOI: 10.1523/jneurosci.3877-08.2008.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAfferent PathwaysAnimalsChondroitin ABC LyaseChondroitin Sulfate ProteoglycansDisease Models, AnimalMaleNerve RegenerationNeural ConductionNeuronal PlasticityRatsRats, WistarRecovery of FunctionRhizotomySensation DisordersSensory Receptor CellsSpinal CordSpinal Cord InjuriesSpinal Nerve RootsTreatment OutcomeConceptsSpinal cord injuryFunctional restorationSensory functionSpinal sensory functionsPrimary afferent terminalsVivo electrophysiological recordingsIntact spinal circuitsEnzyme chondroitinase ABCIntrinsic growth potentialAfferent terminalsBehavioral recoveryIntraspinal injectionCord injurySensory deficitsSpinal cordSpinal circuitsAdult ratsMature CNSTherapeutic interventionsExperimental therapeuticsElectrophysiological recordingsAxon growthInjuryIntact pathwaysEnhance functionReg-2 expression in dorsal root ganglion neurons after adjuvant-induced monoarthritis
Averill S, Inglis JJ, King VR, Thompson SW, Cafferty WB, Shortland PJ, Hunt SP, Kidd BL, Priestley JV. Reg-2 expression in dorsal root ganglion neurons after adjuvant-induced monoarthritis. Neuroscience 2008, 155: 1227-1236. PMID: 18652880, DOI: 10.1016/j.neuroscience.2008.06.049.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsArthritis, ExperimentalGanglia, SpinalGene ExpressionGlial Cell Line-Derived Neurotrophic FactorIndolesLectinsLeukemia Inhibitory FactorLithostathineMaleNeuronsProto-Oncogene Proteins c-retRatsRats, WistarReceptor, trkAReceptors, Purinergic P2Receptors, Purinergic P2X3Substance PTime FactorsConceptsGlial cell line-derived neurotrophic factorDorsal root ganglion neuronsNerve growth factorDRG neuronsLeukemia inhibitory factorReg-2Ganglion neuronsLectin Griffonia simplicifolia IB4Line-derived neurotrophic factorDRG cell bodiesDorsal horn cellsCentral axon terminalsSchwann cell mitogensGriffonia simplicifolia IB4IB4 populationDorsal hornNerve injuryHorn cellsIntrathecal deliveryNeurotrophic factorSubstance PSympathetic neuronsSpinal cordInduced monoarthritisRat modelAxonal growth therapeutics: regeneration or sprouting or plasticity?
Cafferty WB, McGee AW, Strittmatter SM. Axonal growth therapeutics: regeneration or sprouting or plasticity? Trends In Neurosciences 2008, 31: 215-220. PMID: 18395807, PMCID: PMC2678051, DOI: 10.1016/j.tins.2008.02.004.Peer-Reviewed Original ResearchConceptsAxonal growthAstroglial scarHigh clinical significanceFunctional recoveryNeurological injuryInciting eventFunctional deficitsSpinal cordClinical significanceAdult brainLoss of functionCell lossInhibitory factorAxonal connectivityAxonal anatomyAxonal extensionMolecular interventionsMyelinScarCordInjuryBrain
2007
Response to Correspondence: Kim et al., “Axon Regeneration in Young Adult Mice Lacking Nogo-A/B.” Neuron 38, 187–199
Cafferty WB, Kim JE, Lee JK, Strittmatter SM. Response to Correspondence: Kim et al., “Axon Regeneration in Young Adult Mice Lacking Nogo-A/B.” Neuron 38, 187–199. Neuron 2007, 54: 195-199. PMID: 17442242, PMCID: PMC2848952, DOI: 10.1016/j.neuron.2007.04.005.Peer-Reviewed Original ResearchFunctional Axonal Regeneration through Astrocytic Scar Genetically Modified to Digest Chondroitin Sulfate Proteoglycans
Cafferty WB, Yang SH, Duffy PJ, Li S, Strittmatter SM. Functional Axonal Regeneration through Astrocytic Scar Genetically Modified to Digest Chondroitin Sulfate Proteoglycans. Journal Of Neuroscience 2007, 27: 2176-2185. PMID: 17329414, PMCID: PMC2848955, DOI: 10.1523/jneurosci.5176-06.2007.Peer-Reviewed Original ResearchConceptsChondroitin sulfate proteoglycanRole of CSPGsTransgenic miceSensory axon regenerationMotor function recoveryFunctional axonal regenerationCombination-based therapyEnzyme chondroitinase ABCSulfate proteoglycanDorsal hemisectionAxotomized neuronsDorsal rhizotomyCorticospinal axonsCNS injuryFunction recoveryMyelin inhibitorsAxonal regenerationAstrocytic scarLocal efficacyTraumatic injuryAxon regenerationLesion siteInhibitory moleculesFunctional regenerationChondroitinase ABC