Featured Publications
High-speed low-light in vivo two-photon voltage imaging of large neuronal populations
Platisa J, Ye X, Ahrens A, Liu C, Chen I, Davison I, Tian L, Pieribone V, Chen J. High-speed low-light in vivo two-photon voltage imaging of large neuronal populations. Nature Methods 2023, 20: 1095-1103. PMID: 36973547, PMCID: PMC10894646, DOI: 10.1038/s41592-023-01820-3.Peer-Reviewed Original ResearchConceptsNeuronal populationsLarge neuronal populationsNeural circuit functionTwo-photon voltage imagingAwake behaving miceCalcium imagingBehaving miceVoltage imagingCircuit functionNeuronsShot noise levelShot-noise limitImagingTwo-photon microscopeKilohertz frame ratesDeep-tissue imagingPopulationVoltage indicatorsField of viewMiceShot noise
2014
Sensory determinants of behavioral dynamics in Drosophila thermotaxis
Klein M, Afonso B, Vonner AJ, Hernandez-Nunez L, Berck M, Tabone CJ, Kane EA, Pieribone VA, Nitabach MN, Cardona A, Zlatic M, Sprecher SG, Gershow M, Garrity PA, Samuel AD. Sensory determinants of behavioral dynamics in Drosophila thermotaxis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2014, 112: e220-e229. PMID: 25550513, PMCID: PMC4299240, DOI: 10.1073/pnas.1416212112.Peer-Reviewed Original Research
2013
Genetically Targeted Optical Electrophysiology in Intact Neural Circuits
Cao G, Platisa J, Pieribone VA, Raccuglia D, Kunst M, Nitabach MN. Genetically Targeted Optical Electrophysiology in Intact Neural Circuits. Cell 2013, 154: 904-913. PMID: 23932121, PMCID: PMC3874294, DOI: 10.1016/j.cell.2013.07.027.Peer-Reviewed Original ResearchConceptsIntact neural circuitsNeural circuitsIntact brain tissueMembrane potentialNeuronal information processingNervous systemAction potentialsBrain tissueNeuronsStudy of intracellularElectrical activityKey cellular parametersMultiple neuronsElectrical eventsSubthreshold eventsNeurite branchesOptical electrophysiologyReliable recordingCellular parametersVoltage indicatorsFluorescent voltage indicatorsBrain
2007
In Vivo Simultaneous Tracing and Ca2+ Imaging of Local Neuronal Circuits
Nagayama S, Zeng S, Xiong W, Fletcher ML, Masurkar AV, Davis DJ, Pieribone VA, Chen WR. In Vivo Simultaneous Tracing and Ca2+ Imaging of Local Neuronal Circuits. Neuron 2007, 53: 789-803. PMID: 17359915, PMCID: PMC1892750, DOI: 10.1016/j.neuron.2007.02.018.Peer-Reviewed Original ResearchConceptsLocal neuronal circuitsNeuronal circuitsAxon boutonsPostsynaptic dendritesDifferent glomeruliDendritic spinesNeuronal circuitryPresynaptic boutonsPurkinje cellsSuch activity patternsEnsemble activityLocal electroporationSpecific connectivityBoutonsSimultaneous tracingParallel fibersNeuronsImagingVivoActivity patternsPopulation levelLarge populationGlomeruliBrainSpine
2003
Midbrain serotonergic neurons are central pH chemoreceptors
Severson CA, Wang W, Pieribone VA, Dohle CI, Richerson GB. Midbrain serotonergic neurons are central pH chemoreceptors. Nature Neuroscience 2003, 6: 1139-1140. PMID: 14517544, DOI: 10.1038/nn1130.Peer-Reviewed Original Research
2002
Expression of synapsin III in nerve terminals and neurogenic regions of the adult brain
Pieribone VA, Porton B, Rendon B, Feng J, Greengard P, Kao H. Expression of synapsin III in nerve terminals and neurogenic regions of the adult brain. The Journal Of Comparative Neurology 2002, 454: 105-114. PMID: 12412137, DOI: 10.1002/cne.10417.Peer-Reviewed Original ResearchConceptsNerve terminalsAdult brainNeurogenic regionsHippocampal dentate gyrusMarker of immatureSynapsin IIIRostral migratory streamIII-positive neuronsAdult mouse brainImmature neuronsAdult neurogenesisDentate gyrusCell adhesion moleculeOlfactory bulbSynaptic vesicle proteinsMouse brainMigratory streamNeurotransmitter releaseCell bodiesAdhesion moleculesSynapsin IBrainNeuronsPunctate stainingGreat regional variationChemosensitive serotonergic neurons are closely associated with large medullary arteries
Bradley S, Pieribone V, Wang W, Severson C, Jacobs R, Richerson G. Chemosensitive serotonergic neurons are closely associated with large medullary arteries. Nature Neuroscience 2002, 5: 401-402. PMID: 11967547, DOI: 10.1038/nn848.Peer-Reviewed Original ResearchConceptsSudden infant death syndromeSerotonergic neuronsArterial blood CO2Central respiratory chemoreceptorsInfant death syndromePatch-clamp recordingsMedullary arteriesRat medullaBrain slicesDeath syndromeRespiratory chemoreceptorsLarge arteriesTryptophan hydroxylaseBrain functionNeuronsBlood CO2ArteryDevelopmental abnormalitiesMedullaConfocal imagingAnatomical specializationsSyndromeAbnormalitiesNeurons1
2000
Severe deficiencies in dopamine signaling in presymptomatic Huntington's disease mice
Bibb J, Yan Z, Svenningsson P, Snyder G, Pieribone V, Horiuchi A, Nairn A, Messer A, Greengard P. Severe deficiencies in dopamine signaling in presymptomatic Huntington's disease mice. Proceedings Of The National Academy Of Sciences Of The United States Of America 2000, 97: 6809-6814. PMID: 10829080, PMCID: PMC18747, DOI: 10.1073/pnas.120166397.Peer-Reviewed Original ResearchConceptsMedium spiny neuronsDisease miceSpiny neuronsStriatal medium spiny neuronsHuntington's diseaseSevere deficiencyHuntington's disease miceHD model miceModel miceDopaminergic neurotransmissionHD miceSelective neurodegenerationHD pathologyMiceDARPP-32DopamineHuman huntingtinBehavioral phenotypesDiseaseNeuronsIon channelsTotal levelsDisease-causing formHuntingtinDeficiencyMultiple messengers in descending serotonin neurons: localization and functional implications
Hökfelt T, Arvidsson U, Cullheim S, Millhorn D, Nicholas A, Pieribone V, Seroogy K, Ulfhake B. Multiple messengers in descending serotonin neurons: localization and functional implications. Journal Of Chemical Neuroanatomy 2000, 18: 75-86. PMID: 10708921, DOI: 10.1016/s0891-0618(99)00037-x.Peer-Reviewed Original ResearchConceptsGamma-amino butyric acidSerotonin neuronsInhibitory neurotransmitter gamma-amino butyric acidNeurotransmitter gamma-amino butyric acidRaphe serotonin neuronsPost-synaptic actionsParticular substance PNumber of neuropeptidesSerotonin projectionsDorsal hornVentral hornSubstance PSpinal cordSame neuronsRostral levelsSuch neuronsNeuronsEnzyme glutaminasePresent review articleGlutamateRecent studiesReview articleFunctional implicationsWide spectrumHorn
1998
Electrophysiologic Effects of Galanin on Neurons of the Central Nervous System a
PIERIBONE V, XU Z, ZHANG X, HÖKFELT T. Electrophysiologic Effects of Galanin on Neurons of the Central Nervous System a. Annals Of The New York Academy Of Sciences 1998, 863: 264-273. PMID: 9928177, DOI: 10.1111/j.1749-6632.1998.tb10701.x.Peer-Reviewed Original ResearchConceptsCentral nervous systemNervous systemNerve terminalsPresynaptic excitatory inputsLarge dense-core vesiclesDense-core vesiclesGalanin applicationElectrophysiologic effectsElectrophysiologic studyNeuropeptide galaninReceptor subtypesExcitatory inputsElectrical stimulationGalaninInhibitory effectInput resistanceMost casesNeuronsSubtypesNeurotransmittersGalanin–5-hydroxytryptamine interactions: electrophysiological, immunohistochemical and in situ hybridization studies on rat dorsal raphe neurons with a note on galanin R1 and R2 receptors
Xu Z, Zhang X, Pieribone VA, Grillner S, Hökfelt T. Galanin–5-hydroxytryptamine interactions: electrophysiological, immunohistochemical and in situ hybridization studies on rat dorsal raphe neurons with a note on galanin R1 and R2 receptors. Neuroscience 1998, 87: 79-94. PMID: 9722143, DOI: 10.1016/s0306-4522(98)00151-1.Peer-Reviewed Original ResearchConceptsDorsal raphe neuronsRaphe neuronsRat dorsal raphe neuronsCell bodiesOutward currentsInhibitory effectGalanin-like immunoreactivityDorsal raphe nucleusDose-dependent hyperpolarizationExtracellular potassium concentrationGalaninergic mechanismsSitu hybridization studiesGalanin receptorsRaphe nucleusSynaptic contactsNerve endingsPostsynaptic receptorsSoma levelGalaninImmunohistochemical analysisR2 receptorsGalanin R1NeuronsMood regulationPhysiological concentrations
1995
Chapter 4 Peptidergic neurons in the vertebrate spinal cord: evolutionary trends
Brodin L, Söderberg C, Pieribone V, Larhammar D. Chapter 4 Peptidergic neurons in the vertebrate spinal cord: evolutionary trends. Progress In Brain Research 1995, 104: 61-74. PMID: 8552784, DOI: 10.1016/s0079-6123(08)61784-7.Peer-Reviewed Original ResearchConceptsVertebrate spinal cordEarly vertebratesVertebrate classesDifferent vertebratesPeptidergic neuronsMutational eventsVertebrate CNSEvolutionary trendsVertebratesPeptide sequencesMammalian CNSMammalsComprehensive comparative analysisSpeciesFour questionsMolecular featuresCertain CNS regionsTarget cellsAnatomical featuresLater stagesAnatomical differencesCyclostomesCNS regionsEvolutionNeurons
1993
CGRP-like immunoreactivity in A11 dopamine neurons projecting to the spinal cord and a note on CGRP-CCK cross-reactivity
Orazzo C, Pieribone V, Ceccatelli S, Terenius L, Hökfelt T. CGRP-like immunoreactivity in A11 dopamine neurons projecting to the spinal cord and a note on CGRP-CCK cross-reactivity. Brain Research 1993, 600: 39-48. PMID: 8422589, DOI: 10.1016/0006-8993(93)90399-8.Peer-Reviewed Original ResearchConceptsCGRP antiserumSpinal cordRat brainCalcitonin gene-related peptideDopamine cell groupsCGRP-like immunoreactivityGene-related peptideIndirect immunofluorescence techniqueLike immunoreactivityDopamine neuronsBrain areasDouble-labeling procedureImmunofluorescence techniqueCell groupsCholecystokininCatecholamine groupsCordImmunohistochemistryImmunoreactivityNeuronsRadioimmunoassayBrainPresent studyTerminal portionAntiserum
1992
Differential expression of mRNAs for neuropeptide Y-related peptides in rat nervous tissues: possible evolutionary conservation
Pieribone V, Brodin L, Friberg K, Dahlstrand J, Soderberg C, Larhammar D, Hokfelt T. Differential expression of mRNAs for neuropeptide Y-related peptides in rat nervous tissues: possible evolutionary conservation. Journal Of Neuroscience 1992, 12: 3361-3371. PMID: 1527583, PMCID: PMC6575750, DOI: 10.1523/jneurosci.12-09-03361.1992.Peer-Reviewed Original ResearchConceptsNeuropeptide YPeripheral nerve gangliaRat nervous tissuePopulations of neuronsBrainstem neuronsNPY mRNASympathetic gangliaAdrenal glandCaudal medullaCNS neuronsSpinal cordRostral medullaNerve gangliaRat CNSRat brainVisceral organsMammalian CNSPYY mRNANervous tissuePYY immunoreactivityEndocrine cellsPP mRNAPYYNeuronsMidline regionGalanin message-associated peptide (GMAP)- and galanin-like immunoreactivities: Overlapping and differential distributions in the rat
Hökfelt T, Åman K, Arvidsson U, Bedecs K, Ceccatelli S, Hulting A, Langel U, Meister B, Pieribone V, Bartfai T. Galanin message-associated peptide (GMAP)- and galanin-like immunoreactivities: Overlapping and differential distributions in the rat. Neuroscience Letters 1992, 142: 139-142. PMID: 1280789, DOI: 10.1016/0304-3940(92)90358-e.Peer-Reviewed Original ResearchConceptsGalanin-like immunoreactivityGalanin message-associated peptideCentral nervous systemIslets of LangerhansGalanin messageGalanin-LIMost neuronsGalanin antiserumAnterior lobeNervous systemEndocrine tissuesInsulin cellsIndirect immunofluorescenceImmunoreactivityProlactin cellsRatsNeuronsTissueCellsDifferential distributionPancreasPituitaryPeptidesRetinaBrain
1990
Anatomical evidence for multiple pathways leading from the rostral ventrolateral medulla (nucleus paragigantocellularis) to the locus coeruleus in rat
Astier B, Van Bockstaele E, Aston-Jones G, Pieribone V. Anatomical evidence for multiple pathways leading from the rostral ventrolateral medulla (nucleus paragigantocellularis) to the locus coeruleus in rat. Neuroscience Letters 1990, 118: 141-146. PMID: 2274260, DOI: 10.1016/0304-3940(90)90612-d.Peer-Reviewed Original ResearchConceptsRostral ventrolateral medullaLocus coeruleusPhenylethanolamine N-methyltransferaseVentrolateral medullaFluoro-GoldNucleus locus coeruleusNon-lesioned animalsNeurons persistC1 neuronsAfferent neuronsAdrenergic inputSuch lesionsLesionsAnatomical evidenceRatsRetrograde transportCoeruleusMedullaNeuronsMultiple pathways
1988
Adrenergic and non-adrenergic neurons in the C1 and C3 areas project to locus coeruleus: A fluorescent double labeling study
Pieribone V, Aston-Jones G, Bohn M. Adrenergic and non-adrenergic neurons in the C1 and C3 areas project to locus coeruleus: A fluorescent double labeling study. Neuroscience Letters 1988, 85: 297-303. PMID: 3362420, DOI: 10.1016/0304-3940(88)90582-4.Peer-Reviewed Original ResearchConceptsLocus coeruleusAfferent neuronsAdrenergic neuronsFluorescent double-labeling studyRetrograde tracer Fluoro-GoldNon-adrenergic neuronsC1 adrenergic neuronsTracer Fluoro-GoldRat locus coeruleusDouble-labeling studiesPhenylethanolamine N-methyltransferaseVentrolateral medullaDorsomedial medullaFluoro-GoldIontophoretic injectionNeuronsSubsequent immunofluorescenceCoeruleusMedullaAreas project