2017
Urinary bladder hypertrophy characteristic of male ROMK Bartter’s mice does not occur in female mice
Kim JM, Xu S, Guo X, Hu H, Dong K, Wang T. Urinary bladder hypertrophy characteristic of male ROMK Bartter’s mice does not occur in female mice. AJP Regulatory Integrative And Comparative Physiology 2017, 314: r334-r341. PMID: 29092859, PMCID: PMC5899254, DOI: 10.1152/ajpregu.00315.2017.Peer-Reviewed Original ResearchConceptsKO miceBladder hypertrophyBladder weightUrinary bladder hypertrophyRenal outer medullary potassium channelSeverity of hydronephrosisWild-type miceROMK knockout miceBladder capacityDetrusor muscleWT miceUrinary tractBartter's syndromeFemale miceSalt wastingHydronephrosisKnockout miceROMK expressionMiceBladderHypertrophyPotassium channelsMRNA levelsSignificant enlargementSyndrome
2008
Female ROMK null mice manifest more severe Bartter II phenotype on renal function and higher PGE2 production
Yan Q, Yang X, Cantone A, Giebisch G, Hebert S, Wang T. Female ROMK null mice manifest more severe Bartter II phenotype on renal function and higher PGE2 production. AJP Regulatory Integrative And Comparative Physiology 2008, 295: r997-r1004. PMID: 18579648, PMCID: PMC2536865, DOI: 10.1152/ajpregu.00051.2007.Peer-Reviewed Original ResearchConceptsROMK null miceFemale null miceNull miceRenal functionSurvival rateExtent of hydronephrosisDegree of hydronephrosisSeverity of hydronephrosisHigher PGE2 productionHydronephrotic miceLower GFRSyndrome pathophysiologyNg/24 hAcid-base parametersFemale micePGE2 productionHydronephrosisHigher survival rateMiceExcretionSignificant differencesUrinaryMalesSexPossible mechanismMouse model of type II Bartter's syndrome. I. Upregulation of thiazide-sensitive Na-Cl cotransport activity
Cantone A, Yang X, Yan Q, Giebisch G, Hebert SC, Wang T. Mouse model of type II Bartter's syndrome. I. Upregulation of thiazide-sensitive Na-Cl cotransport activity. American Journal Of Physiology. Renal Physiology 2008, 294: f1366-f1372. PMID: 18385266, DOI: 10.1152/ajprenal.00608.2007.Peer-Reviewed Original ResearchMeSH KeywordsAdaptation, PhysiologicalAmilorideAnimalsBartter SyndromeCation Transport ProteinsChloridesDisease Models, AnimalDiureticsEpithelial Sodium ChannelsFemaleFurosemideGlomerular Filtration RateHydrochlorothiazideLoop of HenleMaleMiceMice, Mutant StrainsPotassium Channels, Inwardly RectifyingPregnancySodiumSodium-Potassium-Chloride SymportersSolute Carrier Family 12, Member 1Up-RegulationConceptsThick ascending limbExcretion rateWhole kidney glomerular filtration rateKidney glomerular filtration rateFractional excretion rateFurosemide-induced incrementsGlomerular filtration rateType II Bartter's syndromeHyperprostaglandin E syndromeEffect of furosemideDistal nephron segmentsDistal convoluted tubuleExaggerated natriuresisROMK null miceNa excretionFiltration rateRenal saltAbsolute excretionBartter's syndromeE syndromeMouse modelClearance studiesConvoluted tubulesAscending limbNull miceMouse model of type II Bartter's syndrome. II. Altered expression of renal sodium- and water-transporting proteins
Wagner CA, Loffing-Cueni D, Yan Q, Schulz N, Fakitsas P, Carrel M, Wang T, Verrey F, Geibel JP, Giebisch G, Hebert SC, Loffing J. Mouse model of type II Bartter's syndrome. II. Altered expression of renal sodium- and water-transporting proteins. American Journal Of Physiology. Renal Physiology 2008, 294: f1373-f1380. PMID: 18322017, DOI: 10.1152/ajprenal.00613.2007.Peer-Reviewed Original ResearchMeSH KeywordsAdaptation, PhysiologicalAnimalsBartter SyndromeCarrier ProteinsCation Transport ProteinsDinoprostoneDisease Models, AnimalEpithelial Sodium ChannelsKidney Tubules, DistalKidney Tubules, ProximalLoop of HenleMiceMice, Mutant StrainsPotassium Channels, Inwardly RectifyingReverse Transcriptase Polymerase Chain ReactionSodiumSodium-Hydrogen Exchanger 3Sodium-Hydrogen ExchangersSodium-Phosphate Cotransporter Proteins, Type IIaSodium-Potassium-Chloride SymportersSolute Carrier Family 12, Member 1Up-RegulationWaterConceptsThick ascending limbBartter's syndromeBartter-like phenotypeType II Bartter's syndromeWild-type miceAntenatal Bartter syndromeWild-type littermatesROMK null micePlasma aldosteroneMaternal polyhydramniosRenal sodiumVolume depletionRenal tubulopathyMouse modelSemiquantitative immunoblottingProximal tubulesAscending limbKidney homogenatesSyndromeHenle's loopNull miceDCT cellsWater transport proteinsCompensatory mechanismsMice
2006
Maxi-K channels contribute to urinary potassium excretion in the ROMK-deficient mouse model of Type II Bartter's syndrome and in adaptation to a high-K diet
Bailey M, Cantone A, Yan Q, MacGregor G, Leng Q, Amorim J, Wang T, Hebert S, Giebisch G, Malnic G. Maxi-K channels contribute to urinary potassium excretion in the ROMK-deficient mouse model of Type II Bartter's syndrome and in adaptation to a high-K diet. Kidney International 2006, 70: 51-59. PMID: 16710355, DOI: 10.1038/sj.ki.5000388.Peer-Reviewed Original ResearchMeSH KeywordsAdaptation, PhysiologicalAnimalsBartter SyndromeBiological TransportDietDisease Models, AnimalHypokalemiaKidney Tubules, DistalLarge-Conductance Calcium-Activated Potassium ChannelsLoop of HenleMiceMice, Mutant StrainsPeptidesPotassiumPotassium Channels, Inwardly RectifyingPotassium, DietaryConceptsCortical collecting ductLate distal tubuleType II Bartter syndromeRenal potassium wastingMaxi-K channelsPotassium secretionDistal tubulesBartter's syndromePotassium wastingPotassium excretionIberiotoxin (IBTX)-sensitiveRenal potassium lossSalt-wasting disorderUrinary potassium excretionWild-type miceRenal potassium excretionFree-flow micropunctureDistal convoluted tubuleIncreased renal potassium excretionHigh-K dietLoop of HenleROMK-deficientPersistent hypokalemiaROMK channelsMaxi-K
2002
Absence of Small Conductance K+ Channel (SK) Activity in Apical Membranes of Thick Ascending Limb and Cortical Collecting Duct in ROMK (Bartter's) Knockout Mice*
Lu M, Wang T, Yan Q, Yang X, Dong K, Knepper MA, Wang W, Giebisch G, Shull GE, Hebert SC. Absence of Small Conductance K+ Channel (SK) Activity in Apical Membranes of Thick Ascending Limb and Cortical Collecting Duct in ROMK (Bartter's) Knockout Mice*. Journal Of Biological Chemistry 2002, 277: 37881-37887. PMID: 12130653, PMCID: PMC4426997, DOI: 10.1074/jbc.m206644200.Peer-Reviewed Original ResearchMeSH KeywordsAgingAnimalsBartter SyndromeBase SequenceCell MembraneDisease Models, AnimalDNA PrimersGene Expression RegulationGenotypeHumansKidneyKidney CortexKidney Tubules, CollectingMiceMice, KnockoutPotassium ChannelsPotassium Channels, Calcium-ActivatedPotassium Channels, Inwardly RectifyingPotassium ChlorideSmall-Conductance Calcium-Activated Potassium ChannelsSurvival AnalysisConceptsThick ascending limbSK channel activityROMK null miceBartter's syndromeNull miceSK channelsAscending limbChannel activityExtracellular volume depletionROMK geneCortical collecting ductsWild-type littermatesAbsorption/secretionROMK knockout miceNull mice exhibitPatch-clamp analysisSmall conductanceSignificant hydronephrosisRenal morphologyVolume depletionKnockout miceMice exhibitSyndromeCollecting ductsNaCl reabsorption