2022
A hypothalamic dopamine locus for psychostimulant-induced hyperlocomotion in mice
Korchynska S, Rebernik P, Pende M, Boi L, Alpár A, Tasan R, Becker K, Balueva K, Saghafi S, Wulff P, Horvath TL, Fisone G, Dodt HU, Hökfelt T, Harkany T, Romanov RA. A hypothalamic dopamine locus for psychostimulant-induced hyperlocomotion in mice. Nature Communications 2022, 13: 5944. PMID: 36209152, PMCID: PMC9547883, DOI: 10.1038/s41467-022-33584-3.Peer-Reviewed Original ResearchConceptsLateral septumDopamine neuronsSuprachiasmatic nucleusSomatostatin-containing neuronsStimulation ex vivoAmphetamine-induced hyperlocomotionRegulation of locomotionDopamine outputChemogenetic inhibitionNeuropeptidergic innervationPeriventricular nucleusChemogenetic manipulationHypothalamic lociSynaptic targetsAnterior subdivisionEx vivoBrain clockNeuronsSedentary periodL activityHyperlocomotionCellular targetsMicePeVNInnervation
2020
Crosstalk between maternal perinatal obesity and offspring dopaminergic circuitry
Yasumoto Y, Horvath TL. Crosstalk between maternal perinatal obesity and offspring dopaminergic circuitry. Journal Of Clinical Investigation 2020, 130: 3416-3418. PMID: 32510474, PMCID: PMC7324168, DOI: 10.1172/jci138123.Peer-Reviewed Original ResearchConceptsMedium spiny neuronsHigh-fat dietMaternal obesityD1 medium spiny neuronsD2 medium spiny neuronsFetal brain developmentDopamine midbrain neuronsBehavioral phenotypesAltered excitatoryPerinatal obesityMaternal miceInhibitory balanceSpiny neuronsDopaminergic circuitryMidbrain neuronsBrain developmentObesityAdult HealthOffspring developmentNeuronsPhenotypeExcitatoryMice
2016
Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes
Romanov RA, Zeisel A, Bakker J, Girach F, Hellysaz A, Tomer R, Alpár A, Mulder J, Clotman F, Keimpema E, Hsueh B, Crow AK, Martens H, Schwindling C, Calvigioni D, Bains JS, Máté Z, Szabó G, Yanagawa Y, Zhang MD, Rendeiro A, Farlik M, Uhlén M, Wulff P, Bock C, Broberger C, Deisseroth K, Hökfelt T, Linnarsson S, Horvath TL, Harkany T. Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nature Neuroscience 2016, 20: 176-188. PMID: 27991900, PMCID: PMC7615022, DOI: 10.1038/nn.4462.Peer-Reviewed Original Research
2013
The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry
Hess ME, Hess S, Meyer KD, Verhagen LA, Koch L, Brönneke HS, Dietrich MO, Jordan SD, Saletore Y, Elemento O, Belgardt BF, Franz T, Horvath TL, Rüther U, Jaffrey SR, Kloppenburg P, Brüning JC. The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nature Neuroscience 2013, 16: 1042-1048. PMID: 23817550, DOI: 10.1038/nn.3449.Peer-Reviewed Original ResearchMeSH KeywordsAdenineAlpha-Ketoglutarate-Dependent Dioxygenase FTOAnimalsCocaineCorpus StriatumDopamineDopaminergic NeuronsExploratory BehaviorFemaleG Protein-Coupled Inwardly-Rectifying Potassium ChannelsLocomotionMaleMesencephalonMethylationMethyltransferasesMiceMice, Inbred C57BLMice, KnockoutMixed Function OxygenasesOxo-Acid-LyasesPhenotypeQuinpiroleReceptors, Dopamine D2Receptors, Dopamine D3RewardRNA Processing, Post-TranscriptionalRNA, MessengerSignal Transduction
2012
AgRP neurons regulate development of dopamine neuronal plasticity and nonfood-associated behaviors
Dietrich MO, Bober J, Ferreira JG, Tellez LA, Mineur YS, Souza DO, Gao XB, Picciotto MR, Araújo I, Liu ZW, Horvath TL. AgRP neurons regulate development of dopamine neuronal plasticity and nonfood-associated behaviors. Nature Neuroscience 2012, 15: 1108-1110. PMID: 22729177, PMCID: PMC3411867, DOI: 10.1038/nn.3147.Peer-Reviewed Original Research
2011
Reduced locomotor responses to cocaine in ghrelin-deficient mice
Abizaid A, Mineur YS, Roth RH, Elsworth JD, Sleeman MW, Picciotto MR, Horvath TL. Reduced locomotor responses to cocaine in ghrelin-deficient mice. Neuroscience 2011, 192: 500-506. PMID: 21699961, DOI: 10.1016/j.neuroscience.2011.06.001.Peer-Reviewed Original ResearchConceptsGhrelin KO miceWT miceDopamine releaseLocomotor activityBehavioral effectsDopamine metabolite concentrationsGhrelin-deficient miceLocomotor-stimulating effectsDopamine cell activityEffects of cocaineMesolimbic dopaminergic systemWild-type littermatesOrexigenic hormoneChronic injectionsDopamine utilizationDaily injectionsStriatal dopamineMesolimbic systemWT littermatesDopaminergic systemDaily cocaineFood intakeRewarding effectsPsychostimulant effectsLocomotor responseGPA protects the nigrostriatal dopamine system by enhancing mitochondrial function
Horvath TL, Erion DM, Elsworth JD, Roth RH, Shulman GI, Andrews ZB. GPA protects the nigrostriatal dopamine system by enhancing mitochondrial function. Neurobiology Of Disease 2011, 43: 152-162. PMID: 21406233, PMCID: PMC3623269, DOI: 10.1016/j.nbd.2011.03.005.Peer-Reviewed Original ResearchConceptsNormal chow-fed miceNigrostriatal dopamine systemChow-fed miceTH neuronsGuanidinopropionic acidNormal chowParkinson's diseaseDopamine systemMitochondrial functionMitochondrial dysfunctionModels of neurodegenerationMitochondrial numberAMPK activityMPTP treatmentMPTP intoxicationNigrostriatal functionNeuroprotective effectsMitochondrial respirationNeuroprotective propertiesStriatal dopamineAMPK-dependent increaseDisease progressionMouse modelMiceMPTP
2009
Ghrelin Promotes and Protects Nigrostriatal Dopamine Function via a UCP2-Dependent Mitochondrial Mechanism
Andrews ZB, Erion D, Beiler R, Liu ZW, Abizaid A, Zigman J, Elsworth JD, Savitt JM, DiMarchi R, Tschöp M, Roth RH, Gao XB, Horvath TL. Ghrelin Promotes and Protects Nigrostriatal Dopamine Function via a UCP2-Dependent Mitochondrial Mechanism. Journal Of Neuroscience 2009, 29: 14057-14065. PMID: 19906954, PMCID: PMC2845822, DOI: 10.1523/jneurosci.3890-09.2009.Peer-Reviewed Original ResearchConceptsDA cell lossNigrostriatal dopamine functionParkinson's diseaseDopamine functionCell lossSubstantia nigra pars compactaSNpc DA neuronsStriatal dopamine levelsStriatal dopamine lossExogenous ghrelin administrationLoss of appetiteDopamine cell degenerationNovel therapeutic strategiesMitochondrial mechanismsTyrosine hydroxylase mRNAReactive oxygen species productionMPTP treatmentPeripheral ghrelinSNpc cellsTetrahydropyridine (MPTP) treatmentDA neuronsDopamine lossGhrelin administrationPars compactaCatecholaminergic neuronsLeptin Acts via Leptin Receptor-Expressing Lateral Hypothalamic Neurons to Modulate the Mesolimbic Dopamine System and Suppress Feeding
Leinninger GM, Jo YH, Leshan RL, Louis GW, Yang H, Barrera JG, Wilson H, Opland DM, Faouzi MA, Gong Y, Jones JC, Rhodes CJ, Chua S, Diano S, Horvath TL, Seeley RJ, Becker JB, Münzberg H, Myers MG. Leptin Acts via Leptin Receptor-Expressing Lateral Hypothalamic Neurons to Modulate the Mesolimbic Dopamine System and Suppress Feeding. Cell Metabolism 2009, 10: 89-98. PMID: 19656487, PMCID: PMC2723060, DOI: 10.1016/j.cmet.2009.06.011.Peer-Reviewed Original ResearchConceptsLateral hypothalamic areaVentral tegmental areaMesolimbic DA systemLepRb neuronsMesolimbic dopamine systemLeptin actionLeptin receptorDopamine systemDA systemLeptin-deficient animalsLateral hypothalamic neuronsAnorexigenic hormone leptinLeptin actsHypothalamic areaHypothalamic neuronsSuppress feedingHormone leptinTegmental areaDA contentInhibitory neuronsRate-limiting enzymeBody weightNeuronsLeptinReceptors
2008
Tasteless Food Reward
Andrews ZB, Horvath TL. Tasteless Food Reward. Neuron 2008, 57: 806-808. PMID: 18367081, DOI: 10.1016/j.neuron.2008.03.004.Peer-Reviewed Original Research
2007
Neuronal control of energy homeostasis
Gao Q, Horvath TL. Neuronal control of energy homeostasis. FEBS Letters 2007, 582: 132-141. PMID: 18061579, PMCID: PMC4113225, DOI: 10.1016/j.febslet.2007.11.063.Peer-Reviewed Original ResearchConceptsEnergy homeostasisNeuronal controlMolecular genetic toolsPeripheral metabolic hormonesHypothalamic neuronal circuitsLong-term energy balanceBody energy homeostasisGenetic toolsHomeostatic machineryMetabolic hormonesNeuronal activityNeuronal circuitryBody weightEnergy intakeNeuronal circuitsCellular mechanismsHomeostasisBehavioral techniquesLife spanKey mechanismMachineryIntakeHormoneProlonged wakefulness induces experience-dependent synaptic plasticity in mouse hypocretin/orexin neurons
Rao Y, Liu ZW, Borok E, Rabenstein RL, Shanabrough M, Lu M, Picciotto MR, Horvath TL, Gao XB. Prolonged wakefulness induces experience-dependent synaptic plasticity in mouse hypocretin/orexin neurons. Journal Of Clinical Investigation 2007, 117: 4022-4033. PMID: 18060037, PMCID: PMC2104495, DOI: 10.1172/jci32829.Peer-Reviewed Original ResearchConceptsHypocretin/orexin neuronsLong-term potentiationOrexin neuronsGlutamatergic synapsesSynaptic plasticitySleep lossExperience-dependent synaptic plasticityDopamine D1 receptorsChronic sleep lossSleep-wake regulationModafinil treatmentLateral hypothalamusD1 receptorsSimilar potentiationBrain slicesNeuronal activityNeuronal circuitryDopamine systemNervous systemSynaptic strengthNeuronsPathological conditionsGentle handlingMiceWakefulness
2006
Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite
Abizaid A, Liu ZW, Andrews ZB, Shanabrough M, Borok E, Elsworth JD, Roth RH, Sleeman MW, Picciotto MR, Tschöp MH, Gao XB, Horvath TL. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. Journal Of Clinical Investigation 2006, 116: 3229-3239. PMID: 17060947, PMCID: PMC1618869, DOI: 10.1172/jci29867.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsAppetiteDopamineFluorescent Antibody TechniqueGhrelinMaleMesencephalonMiceMice, Inbred C57BLMice, KnockoutNeuronsNucleus AccumbensPatch-Clamp TechniquesPeptide HormonesRatsRats, Sprague-DawleyReceptors, GhrelinReceptors, G-Protein-CoupledTime FactorsVentral Tegmental AreaConceptsVentral tegmental areaGHSR-deficient miceGHSR-dependent mannerGut hormone ghrelinDopamine neuronal activityMidbrain dopamine neuronsMesolimbic reward circuitrySynaptic input organizationPeripheral ghrelinRebound feedingVTA administrationOrexigenic effectDopamine turnoverGHSR antagonistDopamine neuronsHypothalamic centersTegmental areaHormone ghrelinNucleus accumbensGhrelinNeuronal activitySynapse formationReward circuitryInput organizationFeeding scheduleUncoupling protein‐2 promotes nigrostriatal dopamine neuronal function
Andrews ZB, Rivera A, Elsworth JD, Roth RH, Agnati L, Gago B, Abizaid A, Schwartz M, Fuxe K, Horvath TL. Uncoupling protein‐2 promotes nigrostriatal dopamine neuronal function. European Journal Of Neuroscience 2006, 24: 32-36. PMID: 16882005, DOI: 10.1111/j.1460-9568.2006.04906.x.Peer-Reviewed Original ResearchMeSH Keywords3,4-Dihydroxyphenylacetic AcidAnimalsCorpus StriatumDopamineDopamine Plasma Membrane Transport ProteinsImmunohistochemistryIon ChannelsMaleMembrane Transport ProteinsMiceMice, KnockoutMitochondrial ProteinsMotor ActivityNeuronsSubstantia NigraTyrosine 3-MonooxygenaseUncoupling Protein 2ConceptsSubstantia nigra pars compactaDopamine neuronal functionUCP2-KO miceParkinson's diseaseNeuronal functionNigrostriatal dopamine functionTyrosine hydroxylase immunoreactivityUCP2 knockout miceDopamine transporter immunoreactivityProtein 2Wild-type controlsHydroxylase immunoreactivityPars compactaDopamine turnoverTransporter immunoreactivityDopamine ratioBehavioral deficitsLocomotor functionNucleus accumbensBiochemical deficitsDopamine functionBrain regionsNeurological pathologiesDiseaseMiceUncoupling protein 2/3 immunoreactivity and the ascending dopaminergic and noradrenergic neuronal systems: Relevance for volume transmission
Rivera A, Agnati LF, Horvath TL, Valderrama JJ, de La Calle A, Fuxe K. Uncoupling protein 2/3 immunoreactivity and the ascending dopaminergic and noradrenergic neuronal systems: Relevance for volume transmission. Neuroscience 2006, 137: 1447-1461. PMID: 16387447, DOI: 10.1016/j.neuroscience.2005.05.051.Peer-Reviewed Original ResearchConceptsConfocal laser microscopy analysisReactive oxygen species productionLaser microscopy analysisProtein 2/3Oxygen species productionUncouple oxidative phosphorylationOxidative phosphorylationATP synthesisProteinSpecies productionDouble immunolabelingImportant roleMicroscopy analysisPhosphorylationMitochondriaRegulationCell groupsPlastic changesLocalizationIslandsAnimal modelsMagnaTyrosine hydroxylaseNeuronal systems
2005
Uncoupling protein 2 protects dopaminergic neurons from acute 1,2,3,6‐methyl‐phenyl‐tetrahydropyridine toxicity
Conti B, Sugama S, Lucero J, Winsky‐Sommerer R, Wirz SA, Maher P, Andrews Z, Barr AM, Morale MC, Paneda C, Pemberton J, Gaidarova S, Behrens MM, Beal F, Sanna PP, Horvath T, Bartfai T. Uncoupling protein 2 protects dopaminergic neurons from acute 1,2,3,6‐methyl‐phenyl‐tetrahydropyridine toxicity. Journal Of Neurochemistry 2005, 93: 493-501. PMID: 15816872, DOI: 10.1111/j.1471-4159.2005.03052.x.Peer-Reviewed Original ResearchConceptsDopaminergic neuronsParkinson's diseaseOxidative stressSpecific neuronal expressionTyrosine hydroxylase promoterTetrahydropyridine (MPTP) toxicityCatecholaminergic neuronsSubstantia nigraHydroxylase promoterLocomotor functionMouse modelNeuronal expressionAcute exposureTransgenic miceSporadic formsTwofold elevationUCP2 expressionDiseaseMarked reductionNeuronsMiceNeuroprotectionProtein 2UCP familyDrug targetsUncoupling Protein-2 Is Critical for Nigral Dopamine Cell Survival in a Mouse Model of Parkinson's Disease
Andrews ZB, Horvath B, Barnstable CJ, Elseworth J, Yang L, Beal MF, Roth RH, Matthews RT, Horvath TL. Uncoupling Protein-2 Is Critical for Nigral Dopamine Cell Survival in a Mouse Model of Parkinson's Disease. Journal Of Neuroscience 2005, 25: 184-191. PMID: 15634780, PMCID: PMC6725213, DOI: 10.1523/jneurosci.4269-04.2005.Peer-Reviewed Original ResearchMeSH Keywords1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine1-Methyl-4-phenylpyridiniumAnimalsCell SurvivalCorpus StriatumDisease Models, AnimalDopamineHumansImmunohistochemistryIon ChannelsMaleMembrane Transport ProteinsMiceMice, Inbred C57BLMice, KnockoutMice, TransgenicMitochondriaMitochondrial ProteinsOxygen ConsumptionParkinsonian DisordersReactive Oxygen SpeciesSubstantia NigraUncoupling Protein 2ConceptsProtein 2Mitochondrial ROS productionLack of UCP2Reactive oxygen species productionGenetic manipulationOxygen species productionMitochondria numberCell metabolismATP synthesisCell survivalOverexpression of UCP2Wild-type controlsMitochondrial uncouplingNovel therapeutic targetROS productionUCP2Species productionElectron microscopic analysisOverexpressionCell functionUCP2 overexpressionDopamine cell survivalTherapeutic targetFluorescent ethidiumDopamine cell function
2004
Direct visual and circadian pathways target neuroendocrine cells in primates
Abizaid A, Horvath B, Keefe DL, Leranth C, Horvath TL. Direct visual and circadian pathways target neuroendocrine cells in primates. European Journal Of Neuroscience 2004, 20: 2767-2776. PMID: 15548220, DOI: 10.1111/j.1460-9568.2004.03737.x.Peer-Reviewed Original ResearchConceptsSuprachiasmatic nucleusRetinal inputNeuroendocrine cellsDirect retinal inputHormone-releasing hormoneNon-human primatesHypothalamic suprachiasmatic nucleusSCN efferentsHypothalamic areaHypothalamic neuronsHypothalamic sitesMonosynaptic pathwayVisual afferentsHypothalamic regulatorGonadal axisHormone releaseNeuroendocrine functionPituitary gonadotropsPhotic modulationNeuronsCircadian pacemakerVervet monkeysPresent studyTracing techniquesCircadian clock
2003
Coenzyme Q Induces Nigral Mitochondrial Uncoupling and Prevents Dopamine Cell Loss in a Primate Model of Parkinson’s Disease
Horvath TL, Diano S, Leranth C, Garcia-Segura LM, Cowley MA, Shanabrough M, Elsworth JD, Sotonyi P, Roth RH, Dietrich EH, Matthews RT, Barnstable CJ, Redmond DE. Coenzyme Q Induces Nigral Mitochondrial Uncoupling and Prevents Dopamine Cell Loss in a Primate Model of Parkinson’s Disease. Endocrinology 2003, 144: 2757-2760. PMID: 12810526, DOI: 10.1210/en.2003-0163.Peer-Reviewed Original ResearchConceptsDopamine cell lossParkinson's diseaseCell lossShort-term oral administrationMitochondrial uncouplingSubstantia nigraDopamine neuronsTetrahydropyridine (MPTP) administrationCoenzyme QPrimate modelOral administrationDiseaseOxidative stressState 4 respirationMitochondrial uncoupling proteinAdministrationUncoupling proteinUncouplingNeuronsNigraTetrahydropyridine
2000
Estrogen Is Essential for Maintaining Nigrostriatal Dopamine Neurons in Primates: Implications for Parkinson's Disease and Memory
Leranth C, Roth R, Elsworth J, Naftolin F, Horvath T, Redmond D. Estrogen Is Essential for Maintaining Nigrostriatal Dopamine Neurons in Primates: Implications for Parkinson's Disease and Memory. Journal Of Neuroscience 2000, 20: 8604-8609. PMID: 11102464, PMCID: PMC6773080, DOI: 10.1523/jneurosci.20-23-08604.2000.Peer-Reviewed Original ResearchConceptsNigrostriatal dopamine neuronsDopamine neuronsParkinson's diseaseSubstantia nigraDopamine cellsTyrosine hydroxylase-expressing neuronsTyrosine hydroxylase-immunoreactive cellsNigral dopamine systemsEstrogen replacement therapyNew treatment strategiesUnbiased stereological analysisTypes of neuronsProgression of diseaseEstrogen replacementPostmenopausal womenEstrogen deprivationReplacement therapyTreatment strategiesCompact zoneGonadal hormonesLong-term effectsDopamine systemEstrogenDiseaseNeurons