2022
AgRP neurons control feeding behaviour at cortical synapses via peripherally derived lysophospholipids
Endle H, Horta G, Stutz B, Muthuraman M, Tegeder I, Schreiber Y, Snodgrass IF, Gurke R, Liu ZW, Sestan-Pesa M, Radyushkin K, Streu N, Fan W, Baumgart J, Li Y, Kloss F, Groppa S, Opel N, Dannlowski U, Grabe HJ, Zipp F, Rácz B, Horvath TL, Nitsch R, Vogt J. AgRP neurons control feeding behaviour at cortical synapses via peripherally derived lysophospholipids. Nature Metabolism 2022, 4: 683-692. PMID: 35760867, PMCID: PMC9940119, DOI: 10.1038/s42255-022-00589-7.Peer-Reviewed Original ResearchConceptsFasting-induced hyperphagiaCortical excitabilityAgRP neuronsLysophosphatidic acidPeripheral metabolismHigher body mass indexFasting-induced elevationHypothalamic AgRP neuronsEffects of LPABody mass indexHigher cortical excitabilityBrain lipid levelsCentral nervous systemPrevalence of typeGlutamatergic transmissionHypothalamic agoutiMass indexOvernight fastingPeptide neuronsCortical synapsesLipid levelsFood intakeCerebrospinal fluidNervous systemPhospholipid levels
2021
Neuroinvasion of SARS-CoV-2 in human and mouse brain
Song E, Zhang C, Israelow B, Lu-Culligan A, Prado AV, Skriabine S, Lu P, Weizman OE, Liu F, Dai Y, Szigeti-Buck K, Yasumoto Y, Wang G, Castaldi C, Heltke J, Ng E, Wheeler J, Alfajaro MM, Levavasseur E, Fontes B, Ravindra NG, Van Dijk D, Mane S, Gunel M, Ring A, Kazmi SAJ, Zhang K, Wilen CB, Horvath TL, Plu I, Haik S, Thomas JL, Louvi A, Farhadian SF, Huttner A, Seilhean D, Renier N, Bilguvar K, Iwasaki A. Neuroinvasion of SARS-CoV-2 in human and mouse brain. Journal Of Experimental Medicine 2021, 218: e20202135. PMID: 33433624, PMCID: PMC7808299, DOI: 10.1084/jem.20202135.Peer-Reviewed Original ResearchConceptsSARS-CoV-2Central nervous systemSARS-CoV-2 neuroinvasionImmune cell infiltratesCOVID-19 patientsType I interferon responseMultiple organ systemsCOVID-19I interferon responseHuman brain organoidsNeuroinvasive capacityCNS infectionsCell infiltrateNeuronal infectionPathological featuresCortical neuronsRespiratory diseaseDirect infectionCerebrospinal fluidNervous systemMouse brainInterferon responseOrgan systemsHuman ACE2Infection
2016
Metabolism and Mental Illness
Sestan-Pesa M, Horvath TL. Metabolism and Mental Illness. Trends In Molecular Medicine 2016, 22: 174-183. PMID: 26776095, DOI: 10.1016/j.molmed.2015.12.003.Peer-Reviewed Original ResearchConceptsCentral nervous systemMental illnessBasic metabolic principlesHigher brain functionsCerebral cortexNovel therapiesNervous systemBrain functionSystemic controlPathological conditionsIllnessAppetiteCrucial regulatorFuture research strategiesOverwhelming evidenceMetabolic principlesFeeding behaviorMetabolismHypothalamusTherapyCortexBrain
2013
UCP2 overexpression worsens mitochondrial dysfunction and accelerates disease progression in a mouse model of amyotrophic lateral sclerosis
Peixoto PM, Kim HJ, Sider B, Starkov A, Horvath TL, Manfredi G. UCP2 overexpression worsens mitochondrial dysfunction and accelerates disease progression in a mouse model of amyotrophic lateral sclerosis. Molecular And Cellular Neuroscience 2013, 57: 104-110. PMID: 24141050, PMCID: PMC3891658, DOI: 10.1016/j.mcn.2013.10.002.Peer-Reviewed Original ResearchConceptsAmyotrophic lateral sclerosisDouble transgenic miceFamilial amyotrophic lateral sclerosisMouse modelLateral sclerosisMitochondrial dysfunctionTransgenic miceMutant SOD1 mouse modelHuman UCP2Brain mitochondriaSOD1 mutant miceUCP2 overexpressionPotential neuroprotective effectsProtection of neuronsSOD1 mouse modelCentral nervous systemReactive oxygen species productionDisease courseG93A miceNeuroprotective effectsNeuroprotective roleFree radical generationDisease progressionOxygen species productionInjury paradigmsUncovering Novel Roles of Nonneuronal Cells in Body Weight Homeostasis and Obesity
Chowen JA, Argente J, Horvath TL. Uncovering Novel Roles of Nonneuronal Cells in Body Weight Homeostasis and Obesity. Endocrinology 2013, 154: 3001-3007. PMID: 23798599, PMCID: PMC3749483, DOI: 10.1210/en.2013-1303.Peer-Reviewed Original ResearchConceptsGlial cellsDiverse functionsNovel rolePhysiological functionsNumerous pathologiesPhysiological regulationNonneuronal cellsBody weight homeostasisCentral nervous systemSecondary complicationsWeight homeostasisCellsPathophysiological responsesSystemic metabolismMetabolic controlNervous systemVast lackPoor nutritionStructural supportNeuroendocrine researchObesityAreas of neuroscienceRecent advancesHeterogeneous classRole
2012
Ghrelin and the central regulation of feeding and energy balance
Abizaid A, Horvath TL. Ghrelin and the central regulation of feeding and energy balance. Indian Journal Of Endocrinology And Metabolism 2012, 16: 617-626. PMID: 23565498, PMCID: PMC3602992, DOI: 10.4103/2230-8210.105580.Peer-Reviewed Original Research
2011
Effects of chronic weight perturbation on energy homeostasis and brain structure in mice
Ravussin Y, Gutman R, Diano S, Shanabrough M, Borok E, Sarman B, Lehmann A, LeDuc CA, Rosenbaum M, Horvath TL, Leibel RL. Effects of chronic weight perturbation on energy homeostasis and brain structure in mice. AJP Regulatory Integrative And Comparative Physiology 2011, 300: r1352-r1362. PMID: 21411766, PMCID: PMC3119157, DOI: 10.1152/ajpregu.00429.2010.Peer-Reviewed Original ResearchConceptsDiet-induced obeseEnergy expenditureArcuate nucleus proopiomelanocortin neuronsWeight lossWeight-reduced individualsSustained weight lossReduced body weightObese human subjectsCentral nervous systemHuman subjectsSustained weight gainProopiomelanocortin neuronsBody massUpward resettingMale miceExcitatory synapsesBody fatMouse modelBody weightNervous systemSynaptic changesPersistent decreaseEnergy homeostasisWeight gainBrain structures
2009
Divergent Regulation of Energy Expenditure and Hepatic Glucose Production by Insulin Receptor in Agouti-Related Protein and POMC Neurons
Lin HV, Plum L, Ono H, Gutiérrez-Juárez R, Shanabrough M, Borok E, Horvath TL, Rossetti L, Accili D. Divergent Regulation of Energy Expenditure and Hepatic Glucose Production by Insulin Receptor in Agouti-Related Protein and POMC Neurons. Diabetes 2009, 59: 337-346. PMID: 19933998, PMCID: PMC2809966, DOI: 10.2337/db09-1303.Peer-Reviewed Original ResearchConceptsHepatic glucose productionAgRP neuronsPOMC neuronsInsulin receptorEnergy expenditureInsulin actionGlucose productionInhibitory synaptic contactsSulfonylurea receptor 1 (SUR1) subunitsCentral nervous systemL1 miceProopiomelanocortin neuronsHypothalamic insulinDivergent regulationInsulin resistanceSynaptic contactsInsulin suppressionGlucose metabolismHypothalamic deficiencyNervous systemLocomotor activityDecreased expressionEnergy homeostasisINSRNeurons
2008
N-acylphosphatidylethanolamine, a Gut- Derived Circulating Factor Induced by Fat Ingestion, Inhibits Food Intake
Gillum MP, Zhang D, Zhang XM, Erion DM, Jamison RA, Choi C, Dong J, Shanabrough M, Duenas HR, Frederick DW, Hsiao JJ, Horvath TL, Lo CM, Tso P, Cline GW, Shulman GI. N-acylphosphatidylethanolamine, a Gut- Derived Circulating Factor Induced by Fat Ingestion, Inhibits Food Intake. Cell 2008, 135: 813-824. PMID: 19041747, PMCID: PMC2643061, DOI: 10.1016/j.cell.2008.10.043.Peer-Reviewed Original ResearchConceptsFood intakeInhibits food intakeTreatment of obesityNovel therapeutic targetCentral nervous systemUnknown physiological significanceFat ingestionCirculating factorsN-acylphosphatidylethanolaminePlasma lipidsIntracerebroventricular infusionPhysiologic dosesSystemic administrationTherapeutic targetBody weightNervous systemIngested fatSmall intestineIntakeTaste aversionInfusionPhysiological significanceNanomolar amountsObesityHypothalamus
2006
The unfolding cannabinoid story on energy homeostasis: central or peripheral site of action?
Horvath TL. The unfolding cannabinoid story on energy homeostasis: central or peripheral site of action? International Journal Of Obesity 2006, 30: s30-s32. PMID: 16570102, DOI: 10.1038/sj.ijo.0803275.Peer-Reviewed Original ResearchConceptsBlood-brain barrierCB1 receptor antagonistCentral endocannabinoid systemBody weight regulationWhite adipose tissueCentral nervous systemMesolimbic reward circuitryObserved beneficial effectsEnergy metabolism regulationAnorectic effectPeripheral actionsReceptor antagonistEndocannabinoid systemCB1 antagonistCB1 receptorsBrain sitesCannabinoid actionFood intakeHuman trialsPeripheral tissuesMetabolic disordersWeight regulationAdipose tissueNervous systemPharmaceutical approachesRetinopetal Axons in Mammals: Emphasis on Histamine and Serotonin
Gastinger MJ, Tian N, Horvath T, Marshak DW. Retinopetal Axons in Mammals: Emphasis on Histamine and Serotonin. Current Eye Research 2006, 31: 655-667. PMID: 16877274, PMCID: PMC3351198, DOI: 10.1080/02713680600776119.Peer-Reviewed Original ResearchConceptsRetinopetal axonsEffects of serotoninCentral nervous systemRetina of mammalsDorsal rapheHistaminergic neuronsOptic nervePosterior hypothalamusInner retinaBrain stemRetinal neuronsNervous systemRetinal diseasesAxonsArousal systemNeuronsHistamineAnatomical studyRetinaPerikaryaSerotoninNerveHypothalamusEtiologyRaphe
2003
Mitochondrial uncoupling protein 2 in the central nervous system: neuromodulator and neuroprotector
Horvath TL, Diano S, Barnstable C. Mitochondrial uncoupling protein 2 in the central nervous system: neuromodulator and neuroprotector. Biochemical Pharmacology 2003, 65: 1917-1921. PMID: 12787871, DOI: 10.1016/s0006-2952(03)00143-6.Peer-Reviewed Original ResearchConceptsMitochondrial membrane potentialInner membraneRole of UCP2Normal neuronal functionDiverse tissuesUnknown functionProtein 2Functional significanceImportant playersCentral nervous systemNeuronal functionProteinMembrane potentialNervous systemUCP2Disease statesUCPBrown adipose tissueNew avenuesMitochondriaTissueAdipose tissueUCP1Better understandingUncoupler
2002
Uncoupling protein 2 (UCP2) lowers alcohol sensitivity and pain threshold
Horvath B, Spies C, Horvath G, Kox WJ, Miyamoto S, Barry S, Warden CH, Bechmann I, Diano S, Heemskerk J, Horvath TL. Uncoupling protein 2 (UCP2) lowers alcohol sensitivity and pain threshold. Biochemical Pharmacology 2002, 64: 369-374. PMID: 12147287, DOI: 10.1016/s0006-2952(02)01167-x.Peer-Reviewed Original ResearchConceptsCentral nervous systemTemperature sensationNervous systemBasal forebrain areasMajor risk factorAcute ethanol exposureAcute alcohol consumptionImpairment of painPeripheral energy expenditureAbuse of ethanolProtein 2Ethanol-induced toleranceWild-type animalsUCP2 knockoutPain thresholdTime of recoveryInduces toleranceRisk factorsEthanol exposureForebrain areasAxon terminalsNeuronal responsesAcute exposureAlcohol consumptionEnergy homeostasis
1998
Leptin Receptor Immunoreactivity is Associated with the Golgi Apparatus of Hypothalamic Neurones and Glial Cells
Diano S, Kalra S, Horvath T. Leptin Receptor Immunoreactivity is Associated with the Golgi Apparatus of Hypothalamic Neurones and Glial Cells. Journal Of Neuroendocrinology 1998, 10: 647-650. PMID: 9744481, DOI: 10.1046/j.1365-2826.1998.00261.x.Peer-Reviewed Original ResearchConceptsLeptin receptor immunoreactivityReceptor immunoreactivityPerikaryal membraneGlial cellsGolgi apparatusHypothalamic neuronesCentral nervous systemDifferent second messenger systemsHypothalamic neuronalPeripheral hormonesDentate gyrusSecond messenger systemsEndocrine functionLeptin receptorHypothalamic cellsNervous systemThyroid axisImmunoreactivityCentral mechanismsLeptinIntracellular mechanismsTrans cisternaeNeuronesMessenger systemsPredominant localization
1997
Evidence Showing That β-Endorphin Regulates Cyclic Guanosine 3′,5′-Monophosphate (cGMP) Efflux: Anatomical and Functional Support for an Interaction between Opiates and Nitric Oxide
Pu S, Horvath TL, Diano S, Naftolin F, Kalra PS, Kalra SP. Evidence Showing That β-Endorphin Regulates Cyclic Guanosine 3′,5′-Monophosphate (cGMP) Efflux: Anatomical and Functional Support for an Interaction between Opiates and Nitric Oxide. Endocrinology 1997, 138: 1537-1543. PMID: 9075713, DOI: 10.1210/endo.138.4.5086.Peer-Reviewed Original ResearchConceptsExcitatory amino acidsMedial preoptic areaCGMP/Opioid influenceGnRH secretionNitric oxidePreoptic areaN-methyl-D-aspartate receptorsMu-opiate receptor agonistNOS-immunopositive cellsNOS-immunoreactive neuronsPituitary LH secretionOpiate receptor agonistsOpiate receptor antagonistRelease of GnRHCentral nervous systemDirect inhibitory controlExcitatory NMDATonic restraintLH secretionEndogenous opioidsNOS pathwayReceptor antagonistBeta-endorphinGonadal steroids
1996
Aromatase Immunoreactivity in Axon Terminals of the Vertebrate Brain
Naftolin F, Horvath T, Jakab R, Leranth C, Harada N, Balthazart J. Aromatase Immunoreactivity in Axon Terminals of the Vertebrate Brain. Neuroendocrinology 1996, 63: 149-155. PMID: 9053779, DOI: 10.1159/000126951.Peer-Reviewed Original ResearchConceptsAxon terminalsAromatase immunoreactivityAxonal processesDifferent vertebrate speciesAdult central nervous systemRole of aromataseSmall clear synaptic vesiclesCentral nervous systemClear synaptic vesiclesVertebrate speciesSubcellular locationMost vertebratesSpecific limbicNeuronal perikaryaAromatase activityElectron microscopic examinationEstrogen synthesisHypothalamic structuresSubcellular distributionSynaptic levelVertebrate brainNervous systemBrain aromataseMolecular biologyIntraneuronal production
1992
Presence of calbindin and lack of parvalbumin in progesterone receptor-containing neurons of the monkey mediobasal hypothalamus
Horvath TL, Leranth C, Naftolin* F. Presence of calbindin and lack of parvalbumin in progesterone receptor-containing neurons of the monkey mediobasal hypothalamus. Neuroscience 1992, 50: 309-314. PMID: 1436493, DOI: 10.1016/0306-4522(92)90425-2.Peer-Reviewed Original ResearchConceptsProgesterone receptor-containing neuronsReceptor-containing neuronsReceptor-containing cellsCalbindin-immunoreactive neuronsProgesterone receptorAsymmetric synaptic contactsPresence of calbindinCentral nervous systemAfrican green monkeysLight microscopic resultsGABA neuronsGABAergic neuronsPeriventricular areaSynaptic contactsMonkey hypothalamusPostsynaptic targetsExcitatory fibresInfundibular nucleusMediobasal hypothalamusCalcium-binding proteinsNervous systemCalbindin cellsCalbindinNeuronsParvalbumin content